ThoughtWorks
  • 联系我们
  • Español
  • Português
  • Deutsch
  • English
概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

    智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 低摩擦的运营模式

    提升组织的变革响应力

    企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

    合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
概况

特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
  • Español
  • Português
  • Deutsch
  • English
ThoughtWorks菜单
  • 关闭   ✕
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们
  • 返回
  • 关闭   ✕
  • 概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

  • 低摩擦的运营模式

    提升组织的变革响应力

  • 智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

  • 企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 返回
  • 关闭   ✕
  • 概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
  • 返回
  • 关闭   ✕
  • 概况
  • 特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

  • 数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

  • 所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

  • 返回
  • 关闭   ✕
  • 概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

  • 返回
  • 关闭   ✕
  • 概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
博客
选择主题
查看所有话题关闭
技术 
敏捷项目管理 云 持续交付 数据科学与工程 捍卫网络自由 演进式架构 体验设计 物联网 语言、工具与框架 遗留资产现代化 Machine Learning & Artificial Intelligence 微服务 平台 安全 软件测试 技术策略 
商业 
金融服务 全球医疗 创新 零售行业 转型 
招聘 
职业心得 多元与融合 社会改变 
博客

话题

选择主题
  • 技术
    技术
  • 技术 概观
  • 敏捷项目管理
  • 云
  • 持续交付
  • 数据科学与工程
  • 捍卫网络自由
  • 演进式架构
  • 体验设计
  • 物联网
  • 语言、工具与框架
  • 遗留资产现代化
  • Machine Learning & Artificial Intelligence
  • 微服务
  • 平台
  • 安全
  • 软件测试
  • 技术策略
  • 商业
    商业
  • 商业 概观
  • 金融服务
  • 全球医疗
  • 创新
  • 零售行业
  • 转型
  • 招聘
    招聘
  • 招聘 概观
  • 职业心得
  • 多元与融合
  • 社会改变
物联网技术

QCon Voting Box: Adding a “Like” Button to the Real World

Mat Henshall Mat Henshall

Published: Nov 9, 2016

When visitors come to a website, it’s straightforward to determine insights that allow a company to improve and refine the experience for their visitors: where they went, where they ‘hovered’, if they ‘liked’ a post, and much more.

In the physical world, getting this level of insight is more challenging. How can a company get actionable feedback in the physical world in the same way they do for their online properties?  

This was the challenge facing C4Media, the organizers of international software development conference QCon. Traditionally, QCon used a tray of red, yellow, and green pieces of paper outside a session. Attendees were asked to pick and put into a bucket when they left. This is simple, obvious, low-friction, and has a very high participation rate.

However, the data collected was in the aggregate: feedback without any understanding of a specific attendee's overall experience. Knowing when, where, and who gave feedback across sessions would enable the organizers to continually improve the attendee experience.

Leaving a talk early and voting yellow is different from sticking to the end and voting yellow. Because an individual was identified, patterns across multiple sessions could be seen. An attendee could be contacted later and asked if they would provide further feedback.

The organizers had already tried a mobile app in the past and found that the added friction of accessing the app massively reduced participation.

An idea was proposed using the NFC (near-field communication) tag built into the attendee’s badge. The tag could be used with a device that captured a ‘vote’ to create a system that is as easy and obvious to use as paper, but with the ability to record key details—the who, when and where—for the feedback.

This is not as simple as it seems. Conferences are temporary spaces, networks are unreliable and inconsistent. Installation of special equipment is often prohibited or very difficult to do. Staff are temporary and anything that requires significant training will fail. Any solution must be battery operated as power outlets and dangling wires won’t work out in the busy conference environment.

Making something that humans can intuitively use and is reliable is deceptively hard. With six weeks to go until QCon SF 2015, QCon asked ThoughtWorks to help them design and test such a system.

ThoughtWorks takes a human-centered design approach to these types of problems. The solution needs to be as frictionless as possible: not just for the attendee, but for the operators and organizers of the conference as well.

The first concern is the challenging temporary space of a conference hall. What technology would be robust and fail-safe? We broke the problem down into two distinct needs: collecting an attendee's vote at the exit point, and then the transmission of that vote to the conference organizers back-end systems.

Given the temporary nature of conferences, we realized we needed a solution that a volunteer could hold out to attendees as they left a session. It needed to always be on and as light as possible to reduce fatigue. It needed to be extremely robust—not only physically, but also in terms of capturing votes. Once one or more votes were captured,they needed to be transmitted to the back-end systems for aggregation and analysis.

Looking at various options, the best was to use a small, ultra-low-powered Bluetooth “System on Chip.” These are cheap, easy-to-prototype systems that have a radio to communicate to the outside world and a small, embedded processor to manage inputs and run the application. A solution could be built that would be light and last all day without recharging.

The Bluetooth radio would enable us to wirelessly communicate the results of a vote. Any radio communication, particularly in environments like a conference venue, are error-prone and subject to unreliability.

So we decided to employ an unusual application of Bluetooth and deploy it as a mesh network. Making all the voting devices part of this ad-hoc, self-healing ‘mesh’ network made managing the collection of data completely seamless and automatic. No wires, no complex setting up of a special wifi network. As a node comes into range of another node, it automatically connects.

As one of those nodes connects to a gateway—a laptop or iPad running the gateway software, the data is passed from one node to another until it reaches the gateway and is sent to the backend servers. (Read more here for details of the open-source mesh that ThoughtWorks developed for this project.)

As the technical platform was being decided and iterated on, an approach to developing the form factor was needed. The first decision was to make each voting option a standalone module with its own batteries. This enabled us to greatly simplify the creation of different form factors to hold them, a key need for the design process.

When it came to producing final production candidates, the cost of making three or four times the number of identical boards versus one more complex board is trivial for a small production run. The cost of setting up the assembly line and automated equipment for a run of a few hundred is typically the biggest item, rather than the per board overhead.

At the 2015 QCon in San Francisco, we chose a few small sessions where we could see how the concept would work in practice, identify any issues with the overall service design, and discover what needed to be refined and re-tested.

When a new idea meets reality, some of the things we discovered surprised us:

  • It turned out that the NFC tags in each of the badges were somewhat randomly placed inside the badge holder, and there was no visual indication of where it was. This obviously led to frustration by both participants and volunteers as they searched for the “golden spot.”
  • The initial prototype had a single LED indicator to show when a vote had been registered. The use of the actual badge at the conference often obscured the indication leading to more confusion (although double voting had already been taken care of in the software).
  • By the third day, some attendees had stuffed their badge holder with enough business cards and random handouts to interfere with the NFC tag detection.

There were many minor industrial design items and other observations like these. Some we were able to retool or recode overnight and test the next day, some were logged for the next iteration. For example, we were able to create a version with a buzzer to see if the overall flow was better when both a visual and audible indication was used. It was—obvious in hindsight.

By using 3D printing, different form factors and prototypes could be developed and modified not only in the run-up to the first conference but during the conference after observing the system in use with attendees.

After the first conference, there was enough confidence for us to work with the ThoughtWorks office in Shenzhen and identify a good original design manufacturer (ODM) to develop a single board that would integrate all the chosen hardware and have some made for testing at the next conference.

Over the course of three conferences, the team was able to iterate, refine and live user test the designs until the hardware, software and industrial design was optimal and we could commit to a final production run.

The final design is a modular compact robust system that was more than a vote capturing device. For instance, a single node could be deployed with a different faceplate for attendees to register interest in a particular vendor or talk.

More than a one-off solution, the mesh is a platform for the conference organizers, allowing them to build multiple applications in the future and bridge the physical and digital worlds.

Ready to shape the future of tech?

Join our team of passionate and bright technologists.

Join us
相关博客
物联网

IoT: First the Hype, Then the Plumbing

Mat Henshall
了解更多
体验设计

UX in the Era of IoT

Ted McCarthy
了解更多
技术策略

Build Your Own Technology Radar

Neal Ford
了解更多
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们

WeChat

×
QR code to ThoughtWorks China WeChat subscription account

媒体与第三方机构垂询 | 政策声明 | Modern Slavery statement ThoughtWorks| 辅助功能 | © 2021 ThoughtWorks, Inc.