ThoughtWorks
  • 联系我们
  • Español
  • Português
  • Deutsch
  • English
概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

    智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 低摩擦的运营模式

    提升组织的变革响应力

    企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

    合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
概况

特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
  • Español
  • Português
  • Deutsch
  • English
ThoughtWorks菜单
  • 关闭   ✕
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们
  • 返回
  • 关闭   ✕
  • 概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

  • 低摩擦的运营模式

    提升组织的变革响应力

  • 智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

  • 企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 返回
  • 关闭   ✕
  • 概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
  • 返回
  • 关闭   ✕
  • 概况
  • 特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

  • 数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

  • 所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

  • 返回
  • 关闭   ✕
  • 概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

  • 返回
  • 关闭   ✕
  • 概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
博客
选择主题
查看所有话题关闭
技术 
敏捷项目管理 云 持续交付 数据科学与工程 捍卫网络自由 演进式架构 体验设计 物联网 语言、工具与框架 遗留资产现代化 Machine Learning & Artificial Intelligence 微服务 平台 安全 软件测试 技术策略 
商业 
金融服务 全球医疗 创新 零售行业 转型 
招聘 
职业心得 多元与融合 社会改变 
博客

话题

选择主题
  • 技术
    技术
  • 技术 概观
  • 敏捷项目管理
  • 云
  • 持续交付
  • 数据科学与工程
  • 捍卫网络自由
  • 演进式架构
  • 体验设计
  • 物联网
  • 语言、工具与框架
  • 遗留资产现代化
  • Machine Learning & Artificial Intelligence
  • 微服务
  • 平台
  • 安全
  • 软件测试
  • 技术策略
  • 商业
    商业
  • 商业 概观
  • 金融服务
  • 全球医疗
  • 创新
  • 零售行业
  • 转型
  • 招聘
    招聘
  • 招聘 概观
  • 职业心得
  • 多元与融合
  • 社会改变
金融服务商业

Precision banking: ‘segment of one’

Muralikrishnan Puthanveedu Muralikrishnan Puthanveedu

Published: May 10, 2018

Are banks truly intuitive and responsive to their customers’ needs? While one would like to think so, this sci-fi-like-futuristic banking is still a way off. Interestingly, it’s not for want of technology or access to data and analytics. An intelligence empowered financial sector is an inescapable future. What’s needed to get the ball rolling are courageous CXOs who visualize the eventuality of customer-focused offerings which combines banking practices with behavioral science, and personal finance management - all rolled into one.

One of the biggest hurdles of such an ideal scenario is the lack of trust in financial institutions. Below are graphs from Edelman’s 2017 and 2018 trust barometers, and it's interesting that there has been no progress in the trust scores between the two years when we compare it with Edelman’s 2018 trust barometer.
2017-edelman-trust-barometer-financial-services-results
Edelman’s 2017 trust barometer

2018-edelman-trust-barometer-financial-services-results
Edelman’s 2018 trust barometer
But, that’s slowly reversing with the financial sectors own unencumbered upstarts or Fintech companies. The latter is the reason for the traditional bank’s unbundling because the Fintechs focus on 'serving specific customer needs and serving it better' by providing clear transparency of fee charged for the services offered. And, this regained trust within the financial sector has resulted in a new kind of customer, the Prosumer who is willing to share their information to gain better services.

And with numbers like 40% of GenerationY poised to Bank with the likes of Amazon and Google, it’s no wonder that financial incumbents have begun shifting their strategies. For example, instead of making early-stage bets in new Fintech, they shifted their focus to beefing up their acquisitions.

Incumbents across business sectors are fighting their own digital disruptors. And, I believe the financial sector can learn a thing or two from a particular strategy that’s in play in the health sector - precision healthcare.

The segment of one, a missed opportunity?

Professors C. K. Prahalad and M. S. Krishnan described the Segment of One as N organizations coming together to solve the need of 1 customer. Every individual customer is recognized as a unique (segment of one) whose environment, lifestyle, personality, preferences, needs and wants are appreciated as different. Current banking solutions are overwhelmingly generic and lack relevance and context for intended customers.

I believe precision banking will help traditional banks stay relevant in this digital era because it will force the incumbents to develop intuitive and contextual solutions. For example, effective data analytics could help a financial service provider learn to predict the propensity of purchases, and accordingly get banks to offer a relevant financial product at the right moment.

Here are a few examples of a relevance-filled financial reality made possible through the use of customer data along with the needed consent to use the same. Or in other words, examples that bring to fore the saying, "Timing, it's often assumed, is an art":
  • You are browsing through Amazon.com, looking for an expensive pair of Bose speakers. While scouring the features of your top choices, you receive a text message on your phone. The message has a limited time (5-10 minutes) offer of not just pre-approved credit, but an additional discount (offered only to you) when purchasing the product. Additionally, the message also has some additional advice on the best way to finance your purchase based on your personal spending patterns.
     
  • Late one afternoon, you are quite interested in a particular car in the showroom. A message pops up on your phone offering personalized payment options to purchase cars from the specific showroom/dealer. The message prompts you to send a picture/scan a QR code (and a little more information) of the car in question for the complete range of financial advice for purchasing the car of your dreams. There is a pre-approved, discounted personalized offer that is based on your financial history with your bank. The offer also provides you options for an exchange/resale of that particular car model. A sense of urgency is created with the limited time offer, that’s valid for about 1-2 hours after visiting the car showroom.
The pre-approved offers from these examples enable a friction-less experience when it comes to purchasing via customized financing.

What would it take to design such an intelligent solution system?

Such solutions call for a perceptive data pipeline, that will not only consume from innumerable data sources but will feed germane data elements into complex Artificial Intelligence (AI) and Machine Learning (ML) based decision engines.

Beyond this data pipeline, a robust digital platform will become the foundation on which creative data science and data engineering teams will build, and deploy complex algorithms at pace. The platform will also lend itself to support the extension of these unique algorithms as services for downstream consumption.

A precision banking engine

Precision Banking Engine
Such an approach, that leverages the precision engine depicted above, is apt for a scenario when technology companies like Amazon, Google, and niche fintech players are forcing global incumbent banks to re-evaluate their current range of solution offerings and distribution models. What's more, the data-heavy world that we live in is encouraging financial institutions to attempt contextual relevance in their approach, which will also help close the existing gaps in their portfolios.

It’s clear that financial services will only become a more seamless part of customers’ lifestyles as advances take place in data analytics (with the availability of structured and unstructured data). Also, as banks and personal finance startups freely access and draw inferences from customer-behavior data to tailor product recommendations that suit every (segment of one) customer’s financial habits, the existing trust gap between the customer and his or her financial service provider is sure to close for good.
相关博客
创新

Moving to the center of the customer’s universe

Miranda Hill
了解更多
金融服务

The Intelligent Bank: The Hidden Weakness in Financial Services Business Models

Aneesh Lele
Prashant Gandhi
了解更多
金融服务

Financial Services 2025: 3 Core Principles to Unlock Growth

Aneesh Lele
Anupam Kundu
了解更多
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们

WeChat

×
QR code to ThoughtWorks China WeChat subscription account

媒体与第三方机构垂询 | 政策声明 | Modern Slavery statement ThoughtWorks| 辅助功能 | © 2021 ThoughtWorks, Inc.