ThoughtWorks
  • 联系我们
  • Español
  • Português
  • Deutsch
  • English
概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

    智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 低摩擦的运营模式

    提升组织的变革响应力

    企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

    合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
概况

特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
  • Español
  • Português
  • Deutsch
  • English
ThoughtWorks菜单
  • 关闭   ✕
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们
  • 返回
  • 关闭   ✕
  • 概况
  • 工匠精神和科技思维

    采用现代的软件开发方法,更快地交付价值

  • 客户洞察和数字化产品能力

    快速设计、交付及演进优质产品和卓越体验

  • 低摩擦的运营模式

    提升组织的变革响应力

  • 智能驱动的决策机制

    利用数据资产解锁新价值来源

  • 合作伙伴

    利用我们可靠的合作商网络来扩大我们为客户提供的成果

  • 企业级平台战略

    创建与经营战略发展同步的灵活的技术平台

  • 返回
  • 关闭   ✕
  • 概况
  • 汽车企业
  • 清洁技术,能源与公用事业
  • 金融和保险企业
  • 医疗企业
  • 媒体和出版业
  • 非盈利性组织
  • 公共服务机构
  • 零售业和电商
  • 旅游业和运输业
  • 返回
  • 关闭   ✕
  • 概况
  • 特色

  • 技术

    深入探索企业技术与卓越工程管理

  • 商业

    及时了解数字领导者的最新业务和行业见解

  • 文化

    分享职业发展心得,以及我们对社会公正和包容性的见解

  • 数字出版物和工具

  • 技术雷达

    对前沿技术提供意见和指引

  • 视野

    服务数字读者的出版物

  • 数字化流畅度模型

    可以将应对不确定性所需的数字能力进行优先级划分的模型

  • 解码器

    业务主管的A-Z技术指南

  • 所有洞见

  • 文章

    助力商业的专业洞见

  • 博客

    ThoughtWorks 全球员工的洞见及观点

  • 书籍

    浏览更多我们的书籍

  • 播客

    分析商业和技术最新趋势的精彩对话

  • 返回
  • 关闭   ✕
  • 概况
  • 申请流程

    面试准备

  • 毕业生和变换职业者

    正确开启技术生涯

  • 搜索工作

    在您所在的区域寻找正在招聘的岗位

  • 保持联系

    订阅我们的月度新闻简报

  • 返回
  • 关闭   ✕
  • 概况
  • 会议与活动
  • 多元与包容
  • 新闻
  • 开源
  • 领导层
  • 社会影响力
博客
选择主题
查看所有话题关闭
技术 
敏捷项目管理 云 持续交付 数据科学与工程 捍卫网络自由 演进式架构 体验设计 物联网 语言、工具与框架 遗留资产现代化 Machine Learning & Artificial Intelligence 微服务 平台 安全 软件测试 技术策略 
商业 
金融服务 全球医疗 创新 零售行业 转型 
招聘 
职业心得 多元与融合 社会改变 
博客

话题

选择主题
  • 技术
    技术
  • 技术 概观
  • 敏捷项目管理
  • 云
  • 持续交付
  • 数据科学与工程
  • 捍卫网络自由
  • 演进式架构
  • 体验设计
  • 物联网
  • 语言、工具与框架
  • 遗留资产现代化
  • Machine Learning & Artificial Intelligence
  • 微服务
  • 平台
  • 安全
  • 软件测试
  • 技术策略
  • 商业
    商业
  • 商业 概观
  • 金融服务
  • 全球医疗
  • 创新
  • 零售行业
  • 转型
  • 招聘
    招聘
  • 招聘 概观
  • 职业心得
  • 多元与融合
  • 社会改变
Machine Learning & Artificial Intelligence转型技术商业

Overcoming AI Paralysis: 5 proven ways to start deriving business value

Nagarjun Kandukuru Nagarjun Kandukuru

Published: Mar 24, 2020

AI is the new black. Regardless of their industry, business leaders seem to understand that AI will impact their future in a big way - much like electricity, the internet and mobile have, in the past. This mindset also falls in line with the shift to a Tech@Core approach that we’ve found to be characteristic of the ongoing Fourth Industrial Revolution.

If you intend to stay in the game, your business needs to adapt to new ways of thinking and working. You’ve got to leverage technology in strategic decision-making to be able to discover new business opportunities. 

Based on the myriad conversations we’ve had with our clients and market research that’s available in abundance, we hypothesize that businesses are finding it hard to identify a suitable starting point for AI implementation. 


Finding the start line of your AI journey

As is the case with any other technology, the objective is to discover opportunities that can have an enterprise-wide impact. But most business leaders appear to be overwhelmed since they lack the mental model to understand how they can derive value.

They’re delegating the discovery process to data scientists, who are certainly not the best people to determine business priorities. If you’re wondering where you can start your AI journey, we propose the following approaches. Also, this is assuming you have no prior knowledge of AI. 
 

1. Automation and Andrew Ng’s one-second heuristic

Full-blown automation completely removes the need for human involvement in any process – self-driven cars are perhaps what come to mind first, but other use cases of automation are seen in manufacturing, banking and cybersecurity.

Andrew Ng, the founding lead of Google Brain says, “If a typical person can do a mental task with less than one second of thought, we can automate it using AI.” 

Some establishments have already started acting on the sentiment and are using AI-enabled bots to resolve customer queries. For example, you have bots deciding whether or not a purchase should be refunded, or a mortgage should be approved. More examples that fit the one-second heuristic include examining security videos to detect suspicious behavior or determining whether a car is about to hit a pedestrian and deleting abusive online posts.

Our recommendation is to dive into the systems and processes within your enterprise to identify one-second tasks that are performed repetitively. And, then ask your data/AI teams if these tasks can be automated. 


2. Assistance and/or Augmentation with AI

AI’s ability to influence decision-making in real-time paints it as an extremely valuable tech investment, and there’s more to it than automation. It can also take on the role of providing assistance and enabling augmentation.

For example, in both brick-and-mortar and online stores, AI is seen taking on the role of shop assistants, helping buyers find items and make purchase decisions - Walmart’s Bossa Nova, Sephora’s Color IQ, Amazon’s Online Recommendations engine are a few examples that come to mind.

Interestingly though, AI can assume different roles in different contexts within the same industry. For instance, in healthcare, it augments diagnoses and surgery to help the doctor make decisions. On the other hand, AI-enabled chatbots and virtual platforms assist patients with information gathering.

Understanding whether a said task relies on cognitive decision-making or data-driven models can ease the discovery process. In other words, figuring out whether you want AI to support, enhance or replace human effort is a useful starting point when evaluating a possible use case.
 

3. AI for high-value predictions

Machine Learning, Deep Learning, Natural Language Processing and Automation have already made a huge impact on marketing, sales, customer service, employee engagement, recruitment and more.

At ThoughtWorks, we’ve partnered with a manufacturing company to build an AI-enabled application that can predict repair and maintenance schedules for heavy equipment. The application does all that while also accommodating advancements or postponements in service calls. It also provides easy access to critical information such as customer and equipment details that could impact sales opportunities for dealers.

AI implementation

Another example of a high-value prediction problem can be seen in retail, where AI is helping brands predict an optimum pricing that isn’t too high or too low, while still ensuring overall revenue. In banking and finance, AI-based machine learning can now detect potentially fraudulent payments, and even prevent them.

Using AI to anticipate problems related to buyer preference, staffing or supply-chain management, and designing relevant solutions can help you extract greater value in the long-term, owing to the cumulative effect of making such predictions.
 

4. Out-of-the-box AI

In the short time that AI has emerged to the fore of tech discussions, we’ve seen that every AI application fits these seven patterns that repeat themselves in different combinations.

Recognition – to identify and recognize things within unstructured data
Conversation and Human Interaction – to enable machines to interact with humans more naturally
Predictive Analytics and Decision Support – to help make better decisions
Goal-driven Systems – to find the optimal solution to a problem
Autonomous Systems – to minimize labour
Patterns and Anomalies – to find similarities and dissimilarities
Hyper-personalization – to treat the user as an individual

These patterns are evident in products that are looking to integrate object, text, image, voice, face or gesture recognition. They can also be observed in the ever increasing number of open source, cloud-based AI/ML platforms and tools - much like those offered by Google, Amazon and Mozilla, which encourage developers to build intelligent software applications, allowing businesses to implement them without necessarily hiring AI experts. 

The availability of these resources has already enabled some of the AI applications we’re now seeing in healthcare, finance, security, fraud, intellectual property, retail, and consumer electronics. The good news is that this kind of AI eases the load on your development team. 
 

5. Customer-facing applications vs. Internal Processes

Another way to discover AI use cases is to simply look at all your internal and customer-facing processes, and determine which is in more urgent need of a tech facelift.

For instance, if you’re a food delivery service, AI can help improve user experience, by recommending meals based on purchase history - clearly a customer-facing use case. On the other hand, it could also help forecast the number of delivery personnel required during a specific period. Deriving Value Requires You to Define ‘Value’

The key to exacting AI’s full potential lies in identifying the most suitable role(s) within your use case. The five approaches discussed above may overlap depending on the nature of your business. Different approaches will work for different types of businesses, it’s imperative that you define what ‘value’ means for your business so you can leverage AI to get there.

The next step will be to work with your data team to define the problems more concretely. It’ll help to make an assessment of benefits, feasibility (e.g. data availability) of proposed solutions beforehand, and taking a cross-functional, collaborative approach to it will ensure a more accurate scoping of the problem statement, enabling meaningful design and effective implementation.

A version of this article appeared in PCQuest.

Discover Perspectives

Timely business and industry insights for digital leaders.

Explore
相关博客
职业心得

[Stories of Social Change] Raising awareness for discriminatory AI programs in Brazil

Roselma Mendes
了解更多
数据科学与工程

The business case for AI: Making it real and ethical

Anna Gudmundson
了解更多
Machine Learning & Artificial Intelligence

In the midst of the AI race – are ethics moving fast enough?

Anna Gudmundson
了解更多
  • 产品及服务
  • 合作伙伴
  • 洞见
  • 加入我们
  • 关于我们
  • 联系我们

WeChat

×
QR code to ThoughtWorks China WeChat subscription account

媒体与第三方机构垂询 | 政策声明 | Modern Slavery statement ThoughtWorks| 辅助功能 | © 2021 ThoughtWorks, Inc.