
TECHNOLOGY
RADAR VOL.19

Our thoughts on the
technology and trends that

are shaping the future

thoughtworks.com/radar

#TWTechRadar

https://www.thoughtworks.com/
https://www.thoughtworks.com/radar

CONTRIBUTORS
The Technology Radar is prepared by the
ThoughtWorks Technology Advisory Board, comprised of:

This edition of the ThoughtWorks Technology Radar is based on a
meeting of the Technology Advisory Board in Atlanta in October 2018

Rebecca Parsons (CTO) | Martin Fowler (Chief Scientist) | Bharani Subramaniam | Camilla Crispim | Erik Doernenburg

Evan Bottcher | Fausto de la Torre | Hao Xu | Ian Cartwright | James Lewis | Jonny LeRoy

Ketan Padegaonkar | Lakshminarasimhan Sudarshan | Marco Valtas | Mike Mason | Neal Ford

Ni Wang | Rachel Laycock | Scott Shaw | Shangqi Liu | Zhamak Dehghani

https://thoughtworks.com/profiles/rebecca-parsons
https://thoughtworks.com/profiles/martin-fowler
https://thoughtworks.com/profiles/bharani-subramaniam
https://thoughtworks.com/profiles/camilla-crispim
https://thoughtworks.com/profiles/erik-dornenburg
https://thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://thoughtworks.com/profiles/xu-hao
https://thoughtworks.com/profiles/ian-cartwright
https://thoughtworks.com/profiles/james-lewis
https://thoughtworks.com/profiles/jonny-leroy
http://thoughtworks.com/profiles/ketan-padegaonkar
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://thoughtworks.com/profiles/marco-valtas
https://thoughtworks.com/profiles/mike-mason
https://thoughtworks.com/profiles/neal-ford
https://www.thoughtworks.com/profiles/ni-wang
https://thoughtworks.com/profiles/rachel-laycock
https://thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/liu-shangqi
https://thoughtworks.com/profiles/zhamak-dehghani
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://thoughtworks.com/profiles/camilla-crispim
http://thoughtworks.com/profiles/ketan-padegaonkar
https://thoughtworks.com/profiles/rebecca-parsons
https://thoughtworks.com/profiles/martin-fowler
https://thoughtworks.com/profiles/bharani-subramaniam
https://thoughtworks.com/profiles/neal-ford
https://thoughtworks.com/profiles/erik-dornenburg
https://thoughtworks.com/profiles/marco-valtas
https://thoughtworks.com/profiles/mike-mason
https://thoughtworks.com/profiles/james-lewis
https://thoughtworks.com/profiles/rachel-laycock
https://thoughtworks.com/profiles/jonny-leroy
https://thoughtworks.com/profiles/ian-cartwright
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://thoughtworks.com/profiles/xu-hao
https://thoughtworks.com/profiles/scott-shaw
https://thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/liu-shangqi
https://thoughtworks.com/profiles/zhamak-dehghani
https://www.thoughtworks.com/profiles/ni-wang

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 3

WHAT’S NEW?
Highlighted themes in this edition

STICKY CLOUDS
Cloud providers know they’re competing in a tight market,
and to succeed, they need to sign up and retain long-term
customers. Thus, to stay competitive, they race to add new
features, and we see them reaching feature parity, which is
reflected in our placing of AWS, GCP, and Azure in the Trial
ring in this edition. However, once customers sign up, these
providers tend to create as sticky a connection as possible
with their customers to discourage roaming to another
provider. Often this manifests in a strong dependency on
their specific suite of services and tools, offering a better
developer experience as long as customers stay with them.
Some companies are taken by surprise when the stickiness
becomes apparent, often at the time of making a choice
to move parts or all of their workloads to another cloud
or finding their cloud usage and payments spiraling out of
control. We encourage our clients to use either the run cost
as architecture fitness function technique to monitor the
cost of operation as an indicator of stickiness or Kubernetes
and containers to increase workload portability and reduce
the cost of change to another cloud through infrastructure
as code. In this Radar, we also introduce two new cloud
infrastructure automation tools, Terragrunt and Pulumi.
While we support assessing the new offerings of your cloud
provider through the lens of stickiness, we caution against
generic cloud usage. In our experience, the overhead of
creating and maintaining cloud-agnostic abstraction layers
outweigh the exit cost for a particular provider.

LINGERING ENTERPRISE
ANTIPATTERNS
No matter how fast technology changes, enterprises still
find ways to reimplement antipatterns from the past. Many
of our Hold entries decry an old wolf hiding in new sheep’s
clothing: enterprise service bus (ESB) behavior implemented
on event-streaming platforms—Recreating ESB antipatterns
with Kafka, Layered microservices architecture, Data-hungry
packages, Overambitious API gateways, Low-code platforms
and other noxious old practices. The fundamental problem,
as always, is the balance between isolation and coupling: we
isolate things to make them manageable from a technical
perspective, but then we need to add coordination to make
them useful for solving business problems, resulting in
some form of coupling. Thus, these old patterns keep re-
emerging. New architectures and tools provide appropriate
ways to solve these problems, but that requires deliberate
effort to understand how to use them appropriately and
how to avoid falling back to reimplementing old patterns
with shiny new technology.

ENDURING ENGINEERING
PRACTICES
One side effect of the increased pace of technological
innovation is a repeating expansion and contraction
pattern. When an innovation appears that fundamentally
changes how we think about some aspect of
software development, the industry races to adopt it:
containerization, reactive frontends, machine learning
and so on. That’s the expansion phase. However, to make
this “new thing” truly effective requires figuring out how
to apply enduring engineering practices to it: continuous
delivery, testing, collaboration and so on. The contraction
phase occurs as we ascertain how to use this new
capability effectively, creating a firm foundation to allow
the next explosive expansion. During this phase we learn
how to apply practices such as comprehensive automated
testing and the scripting of sequences of recurring steps
within the context of the new technology. Often, this
goes hand in hand with the creation of new development
tools. While it may seem that the introduction of a new
technological innovation alone advances our industry, it’s
the combination of innovation with enduring engineering
practices that underpins our continued progress.

PACE = DISTANCE / TIME
Our themes usually highlight a pattern we’ve seen over
a handful of entries in the current Radar, but this one
concerns all the entries over the lifetime of the Radar.
We’ve noticed (and we’ve done some research to back it
up) that the length of time our blips remain in the Radar
is falling. When we started the Radar a decade ago, the
default for entries was to remain for two Radar editions
(approximately one year) with no movement before they
fade away automatically. However, as indicated by the
formula in this theme’s title, pace = distance over time:
change in the software development ecosystem continues
to accelerate. Time has remained constant (we still create
the Radar twice a year), but the distance traveled in terms of
technology innovation has noticeably increased, providing
yet more evidence of what’s obvious to any astute observer:
the pace of technology change continues to increase. We
see increased pace in all our Radar quadrants and also in
our client’s appetite to adopt new and diverse technology
choices. Consequently, we modified our traditional default
for this Radar: now, each entry must appear in the Radar
based on its current merit—we no longer allow them to stay
by default. We made this change after careful consideration,
feeling that it allows us to better capture the frenetic pace of
change ever present in the technology ecosystem.

https://thoughtworks.com/radar#browser-up-server-down
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/google-cloud-platform
https://thoughtworks.com/radar/platforms/azure
https://thoughtworks.com/radar/techniques/run-cost-as-architecture-fitness-function
https://thoughtworks.com/radar/techniques/run-cost-as-architecture-fitness-function
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/tools/infrastructure-as-code
https://thoughtworks.com/radar/tools/infrastructure-as-code
https://thoughtworks.com/radar/tools/terragrunt
https://thoughtworks.com/radar/platforms/pulumi
https://thoughtworks.com/radar/techniques/generic-cloud-usage
https://thoughtworks.com/radar/techniques/recreating-esb-antipatterns-with-kafka
https://thoughtworks.com/radar/techniques/recreating-esb-antipatterns-with-kafka
https://thoughtworks.com/radar/techniques/layered-microservices-architecture
https://thoughtworks.com/radar/platforms/data-hungry-packages
https://thoughtworks.com/radar/platforms/data-hungry-packages
https://thoughtworks.com/radar/platforms/overambitious-api-gateways
https://thoughtworks.com/radar/platforms/low-code-platforms

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 4

ABOUT THE RADAR
ThoughtWorkers are passionate about technology.
We build it, research it, test it, open source it, write
about it, and constantly aim to improve it—for
everyone. Our mission is to champion software
excellence and revolutionize IT. We create and share
the ThoughtWorks Technology Radar in support
of that mission. The ThoughtWorks Technology
Advisory Board, a group of senior technology leaders
at ThoughtWorks, creates the Radar. They meet
regularly to discuss the global technology strategy
for ThoughtWorks and the technology trends that
significantly impact our industry.

RADAR AT A GLANCE

Items that are new or have had significant
changes since the last Radar are represented
as triangles, while items that have not
changed are represented as circles.

Our Radar is forward looking. To make room for new items, we fade items
that haven’t moved recently, which isn’t a reflection on their value but rather
our limited Radar real estate.

NEW OR CHANGED

NO CHANGE

HOLD
Proceed with caution.

4ASSESS
Worth exploring with the
goal of understanding
how it will affect your
enterprise.

3

TRIAL
Worth pursuing. It’s important
to understand how to build
up this capability. Enterprises
should try this technology
on a project that can handle
the risk.

2ADOPT
We feel strongly that
the industry should be
adopting these items.
We use them when
appropriate in our
projects.

1

The Radar captures the output of the Technology
Advisory Board’s discussions in a format that provides
value to a wide range of stakeholders, from developers
to CTOs. The content is intended as a concise summary.

We encourage you to explore these technologies for
more detail. The Radar is graphical in nature, grouping
items into techniques, tools, platforms, and languages
and frameworks. When Radar items could appear in
multiple quadrants, we chose the one that seemed
most appropriate. We further group these items in four
rings to reflect our current position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

96 108

421 3

http://thoughtworks.com/radar/faq

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 5

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

6

62

63
64

65
66

67
68

69

71

72

73

74

75

56

57

58

50
51

49

59

60

61

28

29
30

26

27

35

36

37

41 42

43

44 45 46

32
38 39

40 31

48

47

92

81

84

86

85

93

87

88

89

90

83

80

76

77

78

79

82

91

1

2
3

4

5

7
8

9 10

11

12

13

14

15

17
18

19

20

21

22

23

24

25

16

33

34

52
53

54

55

70

New or changed
No change

THE RADAR
TECHNIQUES
ADOPT
1. Event Storming

TRIAL
2. 1% canary NEW
3. Bounded Buy NEW
4. Crypto shredding NEW
5. Four key metrics NEW
6. Multi-account cloud setup NEW
7. Observability as code NEW
8. Risk-commensurate vendor strategy NEW
9. Run cost as architecture fitness function NEW
10. Secrets as a service NEW
11. Security Chaos Engineering
12. Versioning data for reproducible analytics NEW

ASSESS
13. Chaos Katas NEW
14. Distroless Docker images NEW
15. Incremental delivery with COTS NEW
16. Infrastructure configuration scanner
17. Pre-commit downstream build checks NEW
18. Service mesh

HOLD
19. ”Handcranking” of Hadoop clusters

using config management tools NEW
20. Generic cloud usage
21. Layered microservices architecture NEW
22. Master data management NEW
23. Microservice envy
24. Request-response events in user-facing workflows NEW
25. RPA NEW

PLATFORMS
ADOPT

TRIAL
26. Apache Atlas NEW
27. AWS
28. Azure
29. Contentful
30. Google Cloud Platform
31. Shared VPC NEW
32. TICK Stack

ASSESS
33. Azure DevOps NEW
34. CockroachDB NEW
35. Debezium NEW
36. Glitch NEW
37. Google Cloud Dataflow NEW
38. gVisor NEW
39. IPFS NEW
40. Istio NEW
41. Knative NEW
42. Pulumi NEW
43. Quorum NEW
44. Resin.io NEW
45. Rook NEW
46. SPIFFE NEW

HOLD
47. Data-hungry packages NEW
48. Low-code platforms NEW

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 6

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

6

62

63
64

65
66

67
68

69

71

72

73

74

75

56

57

58

50
51

49

59

60

61

28

29
30

26

27

35

36

37

41 42

43

44 45 46

32
38 39

40 31

48

47

92

81

84

86

85

93

87

88

89

90

83

80

76

77

78

79

82

91

1

2
3

4

5

7
8

9 10

11

12

13

14

15

17
18

19

20

21

22

23

24

25

16

33

34

52
53

54

55

70

New or changed
No change

TOOLS
ADOPT

TRIAL
49. acs-engine NEW
50. Archery NEW
51. ArchUnit
52. Cypress
53. git-secrets NEW
54. Headless Firefox
55. LocalStack NEW
56. Mermaid NEW
57. Prettier NEW
58. Rider NEW
59. Snyk NEW
60. UI dev environments NEW
61. Visual Studio Code
62. VS Live Share NEW

ASSESS
63. Bitrise NEW
64. Codefresh NEW
65. Grafeas NEW
66. Heptio Ark NEW
67. Jaeger NEW
68. kube-bench NEW
69. Ocelot NEW
70. Optimal Workshop NEW
71. Stanford CoreNLP NEW
72. Terragrunt NEW
73. TestCafe NEW
74. Traefik NEW
75. Wallaby.js NEW

HOLD

LANGUAGES & FRAMEWORKS
ADOPT

TRIAL
76. Jepsen
77. MMKV NEW
78. MockK NEW
79. TypeScript

ASSESS
80. Apache Beam NEW
81. Camunda NEW
82. Flutter
83. Ktor NEW
84. Nameko NEW
85. Polly.js NEW
86. PredictionIO NEW
87. Puppeteer NEW
88. Q# NEW
89. SAFE stack NEW
90. Spek NEW
91. troposphere
92. WebAssembly
93. WebFlux NEW

HOLD

THE RADAR

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 7

When organizations move toward microservices, one of
the main drivers is the hope for faster time to market.
However, this aspiration only tends to be realized
when services (and their supporting teams) are cleanly
sliced along long-lived business domain boundaries.
Otherwise meaningful features will naturally require
tight coordination between multiple teams and services,
introducing natural friction in competing roadmap
prioritization. The solution to this problem is good domain
modeling, and EVENT STORMING has rapidly become
one of our favorite methods for rapidly identifying the
key concepts in a problem space and aligning a variety of
stakeholders in the best way to slice potential solutions.

Fast feedback is one of our core values for building
software. For many years, we’ve used the canary
release approach to encourage early feedback on new
software versions, while reducing the risk through
incremental rollout to selected users. One of the
questions regarding this technique is how to segment

users. Canary releases to a very small segment (say 1%)
of users can be a catalyst for change. While starting
with a very small segment of users enables teams to
get comfortable with the technique, capturing fast
user feedback enables diverse teams to observe the
impact of new releases and learn and adjust course as
necessary—a priceless change in engineering culture.
We call this, the mighty 1% CANARY.

Out-of-the-box or SaaS solutions tend
to aggressively expand their scope to
entangle themselves into every part of
your business. We recommend a strategy
to only select vendor products that are
modular and decoupled and can be
contained within the Bounded Context of a
single business capability.
(Bounded Buy)

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

6

62

63
64

65
66

67
68

69

71

72

73

74

75

56

57

58

50
51

49

59

60

61

28

29
30

26

27

35

36

37

41 42

43

44 45 46

32
38 39

40 31

48

47

92

81

84

86

85

93

87

88

89

90

83

80

76

77

78

79

82

91

1

2
3

4

5

7
8

9 10

11

12

13

14

15

17
18

19

20

21

22

23

24

25

16

33

34

52
53

54

55

70

TECHNIQUES
ADOPT
1. Event Storming

TRIAL
2. 1% canary NEW
3. Bounded Buy NEW
4. Crypto shredding NEW
5. Four key metrics NEW
6. Multi-account cloud setup NEW
7. Observability as code NEW
8. Risk-commensurate vendor strategy NEW
9. Run cost as architecture fitness function NEW
10. Secrets as a service NEW
11. Security Chaos Engineering
12. Versioning data for reproducible analytics NEW

ASSESS
13. Chaos Katas NEW
14. Distroless Docker images NEW
15. Incremental delivery with COTS NEW
16. Infrastructure configuration scanner
17. Pre-commit downstream build checks NEW
18. Service mesh

HOLD
19. ”Handcranking” of Hadoop clusters

using config management tools NEW
20. Generic cloud usage
21. Layered microservices architecture NEW
22. Master data management NEW
23. Microservice envy
24. Request-response events in user-facing workflows NEW
25. RPA NEW

https://martinfowler.com/articles/microservices.html
https://www.thoughtworks.com/insights/blog/what-are-our-core-values-and-practices-building-software
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 8

Most organizations that don’t have the resources to
custom-build their software will select out-of-the-box or
SaaS solutions to meet their requirements. All too often,
however, these solutions tend to aggressively expand
their scope to entangle themselves into every part of
your business. This blurs integration boundaries and
makes change less predictable and slow. To mitigate this
risk, we recommend that organizations develop a clear
target capability model and then employ a strategy we
call BOUNDED BUY—that is, only select vendor products
that are modular and decoupled and can be contained
within the Bounded Context of a single business
capability. This modularity and independent deliverability
should be included in the acceptance criteria for a
vendor selection process.

Maintaining proper control over sensitive data is difficult,
especially when—for backup and recovery purposes—
data is copied outside of a master system of record.
CRYPTO SHREDDING is the practice of rendering
sensitive data unreadable by deliberately overwriting or
deleting encryption keys used to secure that data. For
example, an entire table of customer personal details
could be encrypted using random keys for each record,
with a different table storing the keys. If a customer
exercised their “right to be forgotten,” we can simply
delete the appropriate key, effectively “shredding” the
encrypted data. This technique can be useful where we’re
confident of maintaining appropriate control of a smaller
set of encryption keys but less confident about control
over a larger data set.

The State of DevOps report and
subsequent Accelerate book highlight a
surprising fact: in order to predict and
improve the performance of a team,
we only need to measure lead time,
deployment frequency, mean time to
restore (MTTR), and change fail percentage.
(Four key metrics)

The State of DevOps report, first published in 2014,
states that high-performing teams create high-

performing organizations. Recently, the team behind the
report released Accelerate, which describes the scientific
method they’ve used in the report. A key takeaway of
both are the FOUR KEY METRICS to support software
delivery performance: lead time, deployment frequency,
mean time to restore (MTTR), and change fail percentage.
As a consultancy that has helped many organizations
transform, these metrics have come up time and time
again as a way to help organizations determine whether
they’re improving the overall performance. Each metric
creates a virtuous cycle and focuses the teams on
continuous improvement: to reduce lead time, you
reduce wasteful activities which, in turn, lets you deploy
more frequently; deployment frequency forces your
teams to improve their practices and automation; your
speed to recover from failure is improved by better
practices, automation and monitoring which reduces the
frequency of failures.

On-demand self-service is a key characteristic (and
benefit) of cloud computing. When large-scale service
landscapes are deployed using a single account, rules
and processes around usage of that account become
necessary, often involving approval steps that increase
turnaround time. A better approach is a MULTI-
ACCOUNT CLOUD SETUP where several accounts are
used, in the extreme one account per team. This does
add overhead in other places, for example, ensuring
shared billing, enabling communication between VPCs
and managing the relationship with the cloud provider.
However, it often accelerates development and it usually
improves security, because single-service accounts
are easier to audit and, in the case of a breach, the
impact is greatly reduced. Having multiple accounts also
reduces stickiness, because an account provides a good
boundary for services that can be moved en bloc to
another cloud provider.

Observability is an integral part of
operating a distributed and microservices-
based architecture. We recommend
treating your observability ecosystem
configurations as code.
(Observability as code)

https://martinfowler.com/bliki/BoundedContext.html
https://www.slideshare.net/tgriffo/agile-australia-2017-hypothesisdriven-cots-software-selection-tiago-griffo
https://puppet.com/resources/whitepaper/state-of-devops-report
https://itrevolution.com/book/accelerate/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 9

The observability is an integral part of operating a
distributed and microservices architecture. We rely on
different system outputs such as distributed tracing,
aggregate logs and metrics to infer the internal state of the
distributed components, diagnose where the problems
are and get to the root cause. An important aspect of
an observability ecosystem is monitoring—visualizing
and analyzing the system’s output—and alerting when
unexpected conditions are detected. Traditionally,
configuration of monitoring dashboards and setting up
alerts is done through GUI-based point-and-click systems.
This approach leads to nonrepeatable dashboard
configurations, no ability to continuously test and adjust
alerts to avoid alert fatigue or missing out on important
alerts, and drift from organizational best practices. We
highly recommend treating your observability ecosystem
configurations as code, called OBSERVABILITY AS CODE,
and adopt infrastructure as code for your monitoring and
alerting infrastructure. Choose observability products that
support configuration through version-controlled code
and execution of APIs or commands via infrastructure
CD pipelines. Observability as code is an often-forgotten
aspect of infrastructure as code and, we believe, crucial
enough to be called out.

Often, in an effort to outsource risk to their suppliers,
businesses look for “one throat to choke” on their most
critical and risky system implementations. Unfortunately,
this gives them fewer solution choices and less flexibility.
Instead, businesses should look to maintain the greatest
vendor independence where the business risk exposure
is highest. We see a new RISK-COMMENSURATE
VENDOR STRATEGY emerging that encourages
investment to maintain vendor independence for
highly critical business systems. Less critical business
functions can take advantage of the streamlined delivery
of a vendor-native solution because it allows them to
absorb more easily the impact of losing that vendor.
This trade-off has become apparent as the major cloud
providers have expanded their range of service offerings.
For example, using AWS Secret Management Service
can speed up initial development and has the benefit of
ecosystem integration, but it will also add more inertia
if you ever need to migrate to a different cloud provider
than it would if you had implemented, for example, Vault.

We still see teams who aren’t tracking the cost of
running their applications as closely as they should as
their software architecture or usage evolves. This is
particularly true when they’re using serverless, which
developers assume will provide lower costs since you’re
not paying for unused server cycles. However, the major
cloud providers are pretty savvy at setting their pricing
models, and heavily used serverless functions, although
very useful for rapid iteration, can get expensive quickly
when compared with dedicated cloud (or on-premise)
servers. We advise teams to frame a system’s RUN COST
AS ARCHITECTURE FITNESS FUNCTION, which means:
track the cost of running your services against the value
delivered; when you see deviations from what was
expected or acceptable, have a discussion about whether
it’s time to evolve your architecture.

We’ve long cautioned people about the temptation
to check secrets into their source code repositories.
Previously, we’ve recommended decoupling secret
management from source code. However, now we’re
seeing a set of good tools emerge that offer SECRETS AS
A SERVICE. With this approach, rather than hardwiring
secrets or configuring them as part of the environment,
applications retrieve them from a separate process.
Tools such as Vault by HashiCorp let you manage secrets
separately from the application and enforce policies such
as frequent rotation externally.

Although we’ve had mostly new blips in this edition of
the Radar, we think it’s worth continuing to call out the
usefulness of SECURITY CHAOS ENGINEERING. We’ve
moved it to Trial because the teams using this technique
are confident that the security policies they have in
place are robust enough to handle common security
failure modes. Still, proceed with caution when using
this technique—we don’t want our teams to become
desensitized to these issues.

Versioning data for large-scale data
analysis or machine intelligence problems
allows us to reproduce different versions
of analysis done on different data sets and
parameters, and is immensely valuable.
(Versioning data for reproducible analytics)

https://martinfowler.com/articles/microservices.html
https://thoughtworks.com/radar/tools/infrastructure-as-code
https://thoughtworks.com/radar/tools/hashicorp-vault
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/techniques/decoupling-secret-management-from-source-code
https://thoughtworks.com/radar/techniques/decoupling-secret-management-from-source-code
https://thoughtworks.com/radar/tools/hashicorp-vault

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 10

When it comes to large-scale data analysis or machine
intelligence problems, being able to reproduce
different versions of analysis done on different data
sets and parameters is immensely valuable. To
achieve reproducible analysis, both the data and the
model (including algorithm choice, parameters and
hyperparameters) need to be version controlled.
VERSIONING DATA FOR REPRODUCIBLE ANALYTICS
is a relatively trickier problem than versioning models
because of the data size. Tools such as DVC help in
versioning data by allowing users to commit and push
data files to a remote cloud storage bucket using a git-like
workflow. This makes it easy for collaborators to pull a
specific version of data to reproduce an analysis.

Repeated execution of Katas helps
engineers to internalize their new skills. We
combine the discipline of Katas with Chaos
Engineering techniques to help engineers
discover problems, recover from failure
and find root causes.
(Chaos Katas)

CHAOS KATAS is a technique that our teams have
developed to train and upskill infrastructure and platform
engineers. It combines Chaos Engineering techniques—
that is, creating failures and outages in a controlled
environment—with the systematic teaching and training
approach of Kata. Here, Kata refers to code patterns that
trigger controlled failures, allowing engineers to discover
the problem, recover from the failure, run postmortem
and find the root cause. Repeated execution of Katas
helps engineers to internalize their new skills.

When building Docker images for our
applications, we’re often concerned with two
things: the security and the size of the image.
With this technique, the footprint of the image
is reduced to the application, its resources
and language runtime dependencies, without
operating system distribution.
(Distroless Docker images)

When building Docker images for our applications, we’re
often concerned with two things: the security and the
size of the image. Traditionally, we’ve used container

security scanning tools to detect and patch common
vulnerabilities and exposures and small distributions
such as Alpine Linux to address the image size and
distribution performance. In this Radar, we’re excited
about addressing the security and size of containers with
a new technique called DISTROLESS DOCKER IMAGES,
pioneered by Google. With this technique, the footprint
of the image is reduced to the application, its resources
and language runtime dependencies, without operating
system distribution. The advantages of this technique
include reduced noise of security scanners, smaller
security attack surface, reduced overhead of patching
vulnerabilities and even smaller image size for higher
performance. Google has published a set of distroless
container images for different languages. You can create
distroless application images using the Google build tool
Bazel, which has rules for creating distroless containers
or simply use multistage Dockerfiles. Note that distroless
containers by default don’t have a shell for debugging.
However, you can easily find debug versions of distroless
containers online, including a busybox shell.

At ThoughtWorks, as early adopters and leaders in the
agile space, we’ve been proponents of the practice
of incremental delivery. We’ve also advised many
clients to look at off-the-shelf software through a “Can
this be released incrementally?” lens. This has often
been difficult because of the big-bang approach of
most vendors which usually involves migrating large
amounts of data. Recently, however, we’ve also had
success using INCREMENTAL DELIVERY WITH COTS
(commercial off-the-shelf), launching specific business
processes incrementally to smaller subsets of users.
We recommend you assess whether you can apply this
practice to the vendor software of your choice, to help
reduce the risks involved in big-bang deliveries.

Most organizations deploy tightly locked-
down and centrally managed cloud
configurations to reduce risk, but this creates
substantial productivity bottlenecks. An
alternative approach is to allow teams to
manage their own configuration and use a
tool to ensure the configuration is set in a
safe and secure way.
(Infrastructure configuration scanner)

For some time now we’ve recommended increased

https://dvc.org/
https://thoughtworks.com/radar/techniques/chaos-engineering
https://en.wikipedia.org/wiki/Kata
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/techniques/container-security-scanning
https://thoughtworks.com/radar/techniques/container-security-scanning
https://cve.mitre.org/
https://cve.mitre.org/
https://alpinelinux.org/
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://bazel.build/
https://busybox.net/downloads/BusyBox.html

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 11

delivery team ownership of their entire stack, including
infrastructure. This means increased responsibility in
the delivery team itself for configuring infrastructure
in a safe, secure, and compliant way. When adopting
cloud strategies, most organizations default to a tightly
locked-down and centrally managed configuration to
reduce risk, but this also creates substantial productivity
bottlenecks. An alternative approach is to allow
teams to manage their own configuration, and use an
INFRASTRUCTURE CONFIGURATION SCANNER to
ensure the configuration is set in a safe and secure way.
Watchmen is an interesting tool, built to provide rule-
driven assurance of AWS account configurations that are
owned and operated independently by delivery teams.
Scout2 is another example of configuration scanning to
support secure compliance.

In more complex architectures and deployments,
it may not be immediately obvious that a build that
depends on the code currently being checked in is
broken. Developers trying to fix a broken build could
find themselves working against a moving target, as the
build is continually triggered by upstream dependencies.
PRE-COMMIT DOWNSTREAM BUILD CHECKS is a very
simple technique: have a pre-commit or pre-push script
check the status of these downstream builds and alert
the developer beforehand that a build is broken.

As large organizations transition to more autonomous
teams owning and operating their own microservices,
how can they ensure the necessary consistency and
compatibility between those services without relying on
a centralized hosting infrastructure? To work together
efficiently, even autonomous microservices need to align
with some organizational standards. A SERVICE MESH
offers consistent discovery, security, tracing, monitoring
and failure handling without the need for a shared asset
such as an API gateway or ESB. A typical implementation
involves lightweight reverse-proxy processes deployed
alongside each service process, perhaps in a separate
container. These proxies communicate with service
registries, identity providers, log aggregators and other
services. Service interoperability and observability are
gained through a shared implementation of this proxy
but not a shared runtime instance. We’ve advocated for
a decentralized approach to microservices management
for some time and are happy to see this consistent
pattern emerge. Open source projects such as Linkerd
and Istio will continue to mature and make service
meshes even easier to implement.

When organizations choose a vanilla Hadoop or
Spark distribution instead of one of the vendor
distributions, they have to decide how they want to
provision and manage the cluster. Occasionally, we see
“HANDCRANKING” OF HADOOP CLUSTERS USING
CONFIG MANAGEMENT TOOLS such as Ansible, Chef
and others. Although these tools are great at provisioning
immutable infrastructure components, they’re not very
useful when you have to manage stateful systems and
can often lead to significant effort trying to manage and
evolve clusters using these tools. We instead recommend
using tools such as Ambari to provision and manage your
stateful Hadoop or Spark clusters.

Increasingly, we’re seeing organizations
prepare to use “any cloud” and to avoid
vendor lock-in at all costs. Their strategy limits
the use of the cloud to only those features
common across all cloud providers—thereby
missing out on the providers’ unique benefits.
(Generic cloud usage)

The major cloud providers have become increasingly
competitive in their pricing and the rapid pace of
releasing new features. This leaves consumers in a
difficult place when choosing and committing to a
provider. Increasingly, we’re seeing organizations prepare
to use “any cloud” and to avoid vendor lock-in at all costs.
This, of course, leads to GENERIC CLOUD USAGE. We
see organizations limiting their use of the cloud to only
those features common across all cloud providers—
thereby missing out on the providers’ unique benefits.
We see organizations making large investments in home-
grown abstraction layers that are too complex to build
and too costly to maintain to stay cloud agnostic. The
problem of lock-in is real. We recommend approaching
this problem with a multicloud strategy that evaluates the
migration cost and effort of capabilities from one cloud
to another against the benefits of using cloud-specific
features. We recommend increasing the portability of the
workloads by shipping the applications as widely adopted
Docker containers: use open source security and identity
protocols to easily migrate the identity of the workloads,
a risk-commensurate vendor strategy to maintain cloud
independence only where necessary and Polycloud to
mix and match services from different providers where it
makes sense. In short, shift your approach from a generic
cloud usage to a sensible multicloud strategy.

http://github.com/iagcl/watchmen
https://thoughtworks.com/radar/tools/scout2
http://linkerd.io/
https://thoughtworks.com/radar/platforms/istio
https://hadoop.apache.org/
https://spark.apache.org/
https://www.ansible.com/
https://www.chef.io/
https://ambari.apache.org/
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/techniques/risk-commensurate-vendor-strategy
https://thoughtworks.com/radar/techniques/polycloud

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 12

A defining characteristic of a microservices architecture
is that system components and services are organized
around business capabilities. Regardless of size,
microservices encapsulate a meaningful grouping
of functionality and information to allow for the
independent delivery of business value. This is in contrast
to earlier approaches in service architecture which
organized services according to technical characteristics.
We’ve observed a number of organizations who’ve
adopted a LAYERED MICROSERVICES ARCHITECTURE,
which in some ways is a contradiction in terms. These
organizations have fallen back to arranging services
primarily according to a technical role, for example,
experience APIs, process APIs or system APIs. It’s too
easy for technology teams to be assigned by layer, so
delivering any valuable business change requires slow
and expensive coordination between multiple teams.
We caution against the effects of this layering and
recommend arranging services and teams primarily
according to business capability.

MASTER DATA MANAGEMENT (MDM) is a classic
example of the enterprise “silver bullet” solution:
it promises to solve an apparently related class of
problems in one go. Through creating a centralized single
point of change, coordination, test and deployment,
MDM solutions negatively impact an organization’s ability
to respond to business change. Implementations tend to
be long and complex, as organizations try to capture and
map all “master” data into the MDM while integrating the
MDM solution into all consuming or producing systems.

Microservices has emerged as a leading architectural
technique in modern cloud-based systems, but we still
think teams should proceed carefully when making
this choice. MICROSERVICE ENVY tempts teams to
complicate their architecture by having lots of services
simply because it’s a fashionable architecture choice.
Platforms such as Kubernetes make it much easier to
deploy complex sets of microservices, and vendors
are pushing their solutions to managing microservices,
potentially leading teams further down this path. It’s
important to remember that microservices trade
development complexity for operational complexity
and require a solid foundation of automated testing,
continuous delivery and DevOps culture.

On a number of occasions we have seen system
designs that use REQUEST-RESPONSE EVENTS IN
USER-FACING WORKFLOWS. In these cases, the UI is
blocked or the user has to wait for a new page to load
until a corresponding response message to a request
message is received. The main reasons cited for designs
like this are performance or a unified approach to
communication between backends for synchronous
and asynchronous use cases. We feel that the increased
complexity—in development, testing and operations—
far outweighs the benefit of having a unified approach,
and we strongly suggest to use synchronous HTTP
requests when synchronous communication between
backend services is needed. When implemented well,
communication using HTTP rarely is a bottleneck in a
distributed system.

The problem with focusing only on
automating business processes—without
addressing the underlying software systems
or capabilities—is that this can make it even
harder to change those underlying systems.
RPA tends to introduce additional coupling,
making any future attempts to address the
legacy IT landscape even more difficult.
(RPA)

Robotic process automation (RPA) is a key part of
many digital transformation initiatives, as it promises
to deliver cost savings without having to modernize the
underlying architecture and systems. The problem with
this approach of focusing only on automating business
processes, without addressing the underlying software
systems or capabilities, is that this can make it even
harder to change the underlying systems by introducing
additional coupling. This makes any future attempts to
address the legacy IT landscape even more difficult. Very
few systems can afford to ignore change and hence
RPA efforts need to be coupled with appropriate legacy
modernization strategies.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://thoughtworks.com/radar/platforms/kubernetes

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 13

Metadata management needs are growing.
Atlas provides the capability to model types
for metadata, classify data assets, track
data lineage and enable data discovery.
This fits enterprise data governance needs.
(Apache Atlas)

With the growing and diverse data needs of enterprises
comes a growing need for metadata management.
APACHE ATLAS is a metadata management framework
that fits the data governance needs of enterprises.
Atlas provides capabilities to model types for metadata,
classify data assets, track the data lineage and enable
data discovery. However, when building a metadata
management platform, we need to be careful not to
repeat the mistakes of master data management.

We first placed AWS in Adopt seven years ago, and
the breadth, depth and reliability of its services
have improved in leaps and bounds since then.
However, we’re now moving AWS back into Trial,
not because of any deficiencies in its offering, but
because its competitors, GCP and Azure, have

matured considerably and selecting a cloud provider
has become increasingly complex. We reserve Adopt
for when we see a clear winner in a field. For many
years, AWS was the default choice, but we now feel
that organizations should make a balanced selection
across cloud providers that takes into account their
geographic and regulatory footprint, their strategic
alignment (or lack thereof) with the providers, and, of
course, the fit between their most important needs
and the cloud providers’ differentiating products.

Microsoft has steadily improved AZURE and today not
much separates the core cloud experience provided
by the major cloud providers—Amazon, Google and
Microsoft. The cloud providers seem to agree and
seek to differentiate themselves in other areas such
as features, services and cost structure. Microsoft
is the provider who shows real interest in the legal
requirements of European companies. They’ve a
nuanced and plausible strategy, including unique
offerings such as Azure Germany and Azure Stack
which gives some certainty to European companies
in anticipation of the GDPR and possible legislative
changes in the United States.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

6

62

63
64

65
66

67
68

69

71

72

73

74

75

56

57

58

50
51

49

59

60

61

28

29
30

26

27

35

36

37

41 42

43

44 45 46

32
38 39

40 31

48

47

92

81

84

86

85

93

87

88

89

90

83

80

76

77

78

79

82

91

1

2
3

4

5

7
8

9 10

11

12

13

14

15

17
18

19

20

21

22

23

24

25

16

33

34

52
53

54

55

70

PLATFORMS
ADOPT

TRIAL
26. Apache Atlas NEW
27. AWS
28. Azure
29. Contentful
30. Google Cloud Platform
31. Shared VPC NEW
32. TICK Stack

ASSESS
33. Azure DevOps NEW
34. CockroachDB NEW
35. Debezium NEW
36. Glitch NEW
37. Google Cloud Dataflow NEW
38. gVisor NEW
39. IPFS NEW
40. Istio NEW
41. Knative NEW
42. Pulumi NEW
43. Quorum NEW
44. Resin.io NEW
45. Rook NEW
46. SPIFFE NEW

HOLD
47. Data-hungry packages NEW
48. Low-code platforms NEW

https://atlas.apache.org/
https://thoughtworks.com/radar/techniques/master-data-management
https://thoughtworks.com/radar/platforms/google-cloud-platform
https://thoughtworks.com/radar/platforms/azure
http://azure.microsoft.com/
http://azure.microsoft.com/en-us/global-infrastructure/germany/
https://thoughtworks.com/radar/platforms/azure-stack
http://www.thoughtworks.com/insights/blog/gdpr-it-s-time-rethink-your-approach-privacy

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 14

Headless content management systems (CMSes)
are becoming a common component of digital
platforms. CONTENTFUL is a modern headless CMS
that our teams have successfully integrated into their
development workflows. We particularly like its API-first
approach and implementing CMS as code. It supports
powerful content modeling primitives as code and
content model evolution scripts, which allow treating it
as other data store schemas and applying evolutionary
database design practices to CMS development. Other
notable features that we’ve liked include inclusion of
two CDNs to deliver media assets and JSON documents,
good support for localization and the ability—albeit with
some effort—to integrate with Auth0.

As GOOGLE CLOUD PLATFORM (GCP) has expanded
in terms of available geographic regions and maturity of
services, customers globally can now seriously consider
it for their cloud strategy. In some areas, GCP has
reached feature parity with its main competitor, Amazon
Web Services, while in other areas it has differentiated
itself—notably with accessible machine learning
platforms, data engineering tools and a workable
Kubernetes as a service solution (GKE). In practice,
our teams have nothing but praise for the developer
experience working with the GCP tools and APIs.

One recommended pattern is to use a
virtual private cloud network managed
at the organizational level and divided
into smaller subnets under the control
of each delivery team. Shared VPC
makes organizations, projects, VPCs
and subnets first-class entities in
network configurations—this simplifies
configuration and makes security and
access control more transparent.
(Shared VPC)

As we’ve gained more experience with the public cloud
across organizations large and small, certain patterns
have emerged. One of those patterns is a virtual private
cloud network managed at the organizational level
and divided into smaller subnets under the control of
each delivery team. This is closely related to the idea

of multi-account cloud setup and helps to partition an
infrastructure along team bounds. After configuring
this setup many times using VPCs, subnets, security
groups and NACLs, we really like Google’s notion of
the SHARED VPC. Shared VPC makes organizations,
projects, VPCs and subnets first-class entities in
network configurations. VPCs can be managed by
an organization’s administrators who can delegate
subnet administration to projects. Projects can then
be explicitly associated with subnets in the VPC. This
simplifies configuration and makes security and access
control more transparent.

TICK STACK is a collection of open source components
that combine to deliver a platform for easily storing,
visualizing and monitoring time series data such as
metrics and events. The components are: Telegraf,
a server agent for collecting and reporting metrics;
InfluxDB, a high-performance time series database;
Chronograf, a user interface for the platform;
and Kapacitor, a data-processing engine that can
process, stream and batch data from InfluxDB. Unlike
Prometheus, which is based on the pull model, TICK
Stack is based on the push model of collecting data.
The heart of the system is the InfluxDB component,
which is one of the best time series databases. The
stack is backed by InfluxData and although you need
the enterprise version for features such as database
clustering, it’s still a fairly good choice for monitoring.
We’re using it in a few places in production and have
had good experiences with it.

AZURE DEVOPS services include a set of managed
services such as hosted Git repos, CI and CD pipelines
and artifact repository. Azure DevOps services have
replaced Visual Studio Team Services. We’ve had
a good experience in starting projects quickly with
Azure DevOps services—managing, building and
releasing applications to Azure. We’ve also run into
a few challenges—such as lack of full support for CI
and CD pipeline as code, slow build agent startup
time, separation of build and release into different
pipelines—and experienced a few downtimes. We’re
hoping that Azure DevOps services improve over time
to provide a good developer experience when hosting
applications on Azure, with a frictionless experience
integrating with other Azure services.

http://www.contentful.com/
http://www.contentful.com/r/knowledgebase/cms-as-code/
http://martinfowler.com/articles/evodb.html
http://martinfowler.com/articles/evodb.html
https://thoughtworks.com/radar/platforms/auth0
http://cloud.google.com/free/ce1/
https://thoughtworks.com/radar/platforms/gke
https://thoughtworks.com/radar/techniques/multi-account-cloud-setup
https://thoughtworks.com/radar/techniques/partition-infrastructure-along-team-bounds
https://thoughtworks.com/radar/techniques/partition-infrastructure-along-team-bounds
https://cloud.google.com/vpc/docs/shared-vpc
http://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/kapacitor/
https://thoughtworks.com/radar/tools/prometheus
https://azure.microsoft.com/en-us/services/devops/
https://docs.microsoft.com/en-us/azure/devops/user-guide/what-happened-vsts?view=vsts
https://thoughtworks.com/radar/platforms/azure

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 15

Inspired by Google’s white paper on
Spanner—its distributed database based
on atomic clocks—CockroachDB is an
open-source alternative that provides
distributed transactions and geo-
partitioning while still supporting SQL.
(CockroachDB)

COCKROACHDB is an open source distributed
database inspired by the white paper Spanner:
Google’s distributed database. In CockroachDB, data
is automatically divided into ranges, usually 64MB,
and distributed across nodes in the cluster. Each
range has a consensus group and, because it uses the
Raft consensus algorithm, the data is always kept in
sync. With its unique design, CockroachDB provides
distributed transactions and geo-partitioning while
still supporting SQL. Unlike Spanner, which relies
on TrueTime with atomic clock for linearizability,
CockroachDB uses NTP for clock synchronization and
provides serializability as the default isolation level. If
you’re working with structured data that fits in a single
node, then choose a traditional relational database.
However, if your data needs to scale across nodes, be
consistent and survive failures, then we recommend
you take a closer look at CockroachDB.

We’re always on the lookout for tools or
platforms to support Change Data Capture
and streaming data updates. Debezium is
an excellent choice. It works by reacting to
changes in database log files and is highly
scalable and resilient to failures.
(Debezium)

DEBEZIUM is a change data capture (CDC) platform that
can stream database changes onto Kafka topics. CDC is
a popular technique with multiple use cases, including
replicating data to other databases, feeding analytics
systems, extracting microservices from monoliths and
invalidating caches. We’re always on the lookout for
tools or platforms in this space (we talked about Bottled
Water in a previous Radar) and Debezium is an excellent
choice. It uses a log-based CDC approach which means

it works by reacting to changes in the database’s log
files. Debezium uses Kafka Connect which makes it
highly scalable and resilient to failures and has CDC
connectors for multiple databases including Postgres,
Mysql and MongoDB. We’re using it in a few projects
and it has worked very well for us.

We’ve been intrigued by GLITCH, which is a
collaborative online development environment that
lets you easily copy and adapt (or “remix”) existing web
apps or create your own. Rooted in the “tinkerer” ethos,
it’s ideal for people learning to code but it has the
capability to support more complex applications. The
main focus is on JavaScript and Node.js, but it also has
limited support for other languages. With integrated
live editing, hosting, sharing and automatic source
versioning, Glitch offers a refreshing and distinctive take
on collaborative programming.

GOOGLE CLOUD DATAFLOW is useful in traditional ETL
scenarios for reading data from a source, transforming
it and then storing it to a sink, with configurations and
scaling being managed by dataflow. Dataflow supports
Java, Python and Scala and provides wrappers for
connections to various types of data sources. However,
the current version won’t let you add additional
libraries, which may make it unsuitable for certain data
manipulations. You also can’t change the dataflow
DAG dynamically. Hence, if your ETL has conditional
execution flows based on parameters, you may not be
able to use dataflow without workarounds.

GVISOR is a user-space kernel for containers. It limits
the host kernel surface accessible to the application
without taking away access to all the features it
expects. Unlike existing sandbox technologies, such
as virtualized hardware (KVM and Xen) or rule-based
execution (seccomp, SELinux and AppArmor), gVisor
takes a distinct approach to container sandboxing
by intercepting application system calls and acting
as the guest kernel without the need for translation
through virtualized hardware. gVisor includes an Open
Container Initiative (OCI) runtime called runsc that
integrates with Docker and provides experimental
support for Kubernetes. gVisor is a relatively new
project and we recommend assessing it for your
container security landscape.

https://www.cockroachlabs.com/product/cockroachdb/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/39966.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/39966.pdf
https://raft.github.io/
https://thoughtworks.com/radar/platforms/cloud-spanner
https://cloud.google.com/spanner/docs/true-time-external-consistency
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Change_data_capture
https://thoughtworks.com/radar/tools/apache-kafka
https://thoughtworks.com/radar/tools/bottled-water
https://thoughtworks.com/radar/tools/bottled-water
https://glitch.com/
https://thoughtworks.com/radar/platforms/node-js
https://cloud.google.com/dataflow/
https://github.com/google/gvisor
https://www.linux-kvm.org/
https://www.xenproject.org/
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://selinuxproject.org/
https://wiki.ubuntu.com/AppArmor
https://www.opencontainers.org/
https://www.opencontainers.org/
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/platforms/kubernetes

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 16

In most cases, blockchain is not the right place to store
a blob file (e.g., image or audio). When developing
DApp, one option is to put blob files in some off-chain
centralized data storage, which usually signals lack of
trust. Another option is to store them on InterPlanetary
File System (IPFS), which is a content-addressed,
versioned, peer-to-peer file system. It’s designed to
distribute high volumes of data with high efficiency and
removed from any centralized authority. Files are stored
on peers that don’t need to trust each other. IPFS keeps
every version of a file so you never lose important
files. We see IPFS as a good complement to blockchain
technology. Beyond its blockchain application, IPFS
has an ambitious goal to decentralize the Internet
infrastructure.

When building and operating a microservices
ecosystem, one of the early questions to answer is
how to implement cross-cutting concerns such as
service discovery, service-to-service and origin-to-
service security, observability (including telemetry and
distributed tracing), rolling releases and resiliency.
Over the last couple of years, our default answer to
this question has been using a service mesh technique.
A service mesh offers the implementation of these
cross-cutting capabilities as an infrastructure layer
that is configured as code. The policy configurations
can be consistently applied to the whole ecosystem of
microservices; enforced on both in and out of mesh
traffic (via the mesh proxy as a gateway) as well as on
the traffic at each service (via the same mesh proxy as
a sidecar container). While we’re keeping a close eye
on the progress of different open source service mesh
projects such as Linkerd, we’ve successfully used ISTIO
in production with a surprisingly easy-to-configure
operating model.

As application developers, we love to focus on solving
core business problems and let the underlying
platform handle the boring but difficult tasks of
deploying, scaling and managing applications. Although
serverless architecture is a step in that direction,
most of the popular offerings are tied to a proprietary
implementation, which means vendor lock-in.
KNATIVE tries to address this by being an open source
serverless platform that integrates well with the popular
Kubernetes ecosystem. With Knative you can model
computations on request in a supported framework
of your choice (including Ruby on Rails, Django and
Spring among others); subscribe, deliver and manage

events; integrate with familiar CI and CD tools; and
build containers from source. By providing a set of
middleware components for building source-centric
and container-based applications that can be elastically
scaled, Knative is an attractive platform that deserves to
be assessed for your serverless needs.

While tightly focusing on cloud-native
architectures, Pulumi is an infrastructure
automation tool that distinguishes itself
by allowing configurations to be written in
TypeScript/JavaScript, Python and Go.
(Pulumi)

We’re quite interested in PULUMI, a promising
entrant in cloud infrastructure automation. Pulumi
distinguishes itself by allowing configurations to be
written in TypeScript/JavaScript, Python and Go—no
YAML required. Pulumi is tightly focused on cloud-
native architectures—including containers, serverless
functions and data services—and provides good
support for Kubernetes.

Ethereum is the leading developer ecosystem in
blockchain tech. We’ve seen emerging solutions
that aim to spread this technology into enterprise
environments that usually require network
permissioning and transaction privacy as well as
higher throughput and lower latency. QUORUM is
one of these solutions. Originally developed by J.P.
Morgan, Quorum positions itself as “an enterprise-
focused version of Ethereum.” Unlike the Hyperledger
Burrow node, which creates a new Ethereum virtual
machine (EVM), Quorum forks code from Ethereum’s
official client so that it can evolve alongside Ethereum.
Although it keeps most features of the Ethereum
ledger, Quorum changes the consensus protocol
from PoW to more efficient ones and adds private
transaction support. With Quorum, developers can
use their Ethereum knowledge of using, for example,
Solidity and Truffle contracts to build enterprise
blockchain applications. However, based on our
experience, Quorum is not yet enterprise ready; for
example, it lacks access control for private contracts,
doesn’t work well with load balancers and only
has partial database support, all of which will lead
to significant deployment and design burden. We
recommend that you’re cautious in implementing
Quorum while keeping an eye on its development.

https://en.wikipedia.org/wiki/Binary_large_object
https://thoughtworks.com/radar/techniques/ethereum-for-decentralized-applications
https://ipfs.io/
https://martinfowler.com/articles/microservices.html
https://thoughtworks.com/radar/techniques/service-mesh
https://linkerd.io/
https://istio.io/
https://thoughtworks.com/radar/techniques/serverless-architecture
https://cloud.google.com/knative/
https://thoughtworks.com/radar/platforms/kubernetes
https://pulumi.io/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/languages-and-frameworks/python-3
https://thoughtworks.com/radar/platforms/ethereum
https://www.jpmorgan.com/global/Quorum
https://github.com/hyperledger/burrow
https://github.com/hyperledger/burrow
https://thoughtworks.com/radar/languages-and-frameworks/solidity
https://thoughtworks.com/radar/languages-and-frameworks/truffle

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 17

RESIN.IO is an Internet of Things (IoT) platform that
does one thing and does it well: it deploys containers
onto devices. Developers use a software as a service
(SaaS) portal to manage devices and assign applications,
defined by Dockerfiles, to them. The platform can
build containers for various hardware types and
deploys the images over the air. For the containers,
Resin.io uses balena, an engine based on the Moby
framework created by Docker. The platform is still under
development, has some rough edges and lacks some
features (e.g., working with private registries), but the
current feature set, including the option to ssh into
a container on a device from the web portal, points
toward a promising future.

ROOK is an open source cloud native storage
orchestrator for Kubernetes. Rook integrates with
Ceph and brings File, Block and Object storage systems
into the Kubernetes cluster, running them seamlessly
alongside other applications and services that are
consuming the storage. By using Kubernetes operators,
Rook orchestrates Ceph at the control plane and stays
clear of the data path between applications and Ceph.
Storage is one of the important components of cloud-
native computing and we believe that Rook, though
still an incubating-level project at CNCF, takes us a step
closer to self-sufficiency and portability across public
cloud and on-premise deployments.

Making key elements of Google’s groundbreaking,
high-scale platform available as open source offerings
appears to have become a trend. In the same way
that HBASE drew on BigTable and Kubernetes drew
on Borg, SPIFFE is now drawing upon Google’s LOAS
to bring to life a critical cloud-native concept called
workload identity. The SPIFFE standards are backed by

the OSS SPIFFE Runtime Environment (SPIRE), which
automatically delivers cryptographically provable
identities to software workloads. Although SPIRE isn’t
quite ready for production use, we see tremendous
value in a platform-agnostic way to make strong
identity assertions between workloads in modern,
distributed IT infrastructures. SPIRE supports many
use cases, including identity translation, OAuth client
authentication, mTLS “encryption everywhere,” and
workload observability. Istio uses SPIFFE by default.

DATA-HUNGRY PACKAGES are solutions that require
absorption of data into themselves in order to function.
In some cases they may even require that they become
the “master” for that data. Once the data is owned by
the package, that software becomes the only way to
update, change or access the data. The data-hungry
package might solve a particular business problem such
as ERP. However, inventory or finance “data demands”
placed upon an organization will often require complex
integration and changes to systems that lie well outside
of the original scope.

LOW-CODE PLATFORMS use graphical user interfaces
and configuration in order to create applications.
Unfortunately, low-code environments are promoted
with the idea that this means you no longer need skilled
development teams. Such suggestions ignore the fact
that writing code is just a small part of what needs to
happen to create high-quality software—practices such
as source control, testing and careful design of solutions
are just as important. Although these platforms have
their uses, we suggest approaching them with caution,
especially when they come with extravagant claims for
lower cost and higher productivity.

https://resin.io/
https://www.balena.io/
https://thoughtworks.com/radar/platforms/docker
https://rook.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/ceph
https://www.cncf.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://spiffe.io/
https://github.com/spiffe/spire
https://thoughtworks.com/radar/platforms/istio

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 18

Azure Container Service Engine (ACS-ENGINE) is an
Azure Resource Manager (ARM) template generator.
The required configurations of the cluster are
defined in a JSON file; acs-engine reads these cluster
definitions and generates a number of files that can be
consumed by ARM. The tool also provides flexibility to
choose different orchestrators—including Kubernetes,
DC/OS, OpenShift, Swarm mode and Swarm—and to
configure features and agents of the cluster. We’ve
been using acs-engine in a number of projects and
would recommend it for managing clusters in Azure
Container Service.

We’re seeing significant advances in security tooling
integration with modern software delivery processes.
ARCHERY is an open source tool with an active
community that’s doing a good job of pulling together
a collection of other tools, including Zap. Designed
primarily for web applications, Archery makes it
easy to integrate security tooling into your build and
deployment systems. Its dashboards also let you track
vulnerabilities as well as application and network scans.

ARCHUNIT is a Java testing library for checking
architecture characteristics such as package and class
dependencies, annotation verification and even layer
consistency. We like that it runs as unit tests within
your existing test setup, even though it supports
only Java-based architectures. The ArchUnit test
suite can be incorporated into a CI environment or a
deployment pipeline, making it easier to implement
fitness functions in an evolutionary architecture way.

Running end-to-end tests can present challenges,
such as the long duration of the running process, the
flakiness of some tests and the challenges of fixing
failures in CI when running tests in headless mode.
Our teams have had very good experiences with
CYPRESS by solving common issues such as lack of
performance and long wait time for responses and
resources to load. Cypress is a useful tool that helps
developers build end-to-end tests and records all test
steps as a video in an MP4 file to make it easier to
identify errors.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

6

62

63
64

65
66

67
68

69

71

72

73

74

75

56

57

58

50
51

49

59

60

61

28

29
30

26

27

35

36

37

41 42

43

44 45 46

32
38 39

40 31

48

47

92

81

84

86

85

93

87

88

89

90

83

80

76

77

78

79

82

91

1

2
3

4

5

7
8

9 10

11

12

13

14

15

17
18

19

20

21

22

23

24

25

16

33

34

52
53

54

55

70

TOOLS
ADOPT

TRIAL
49. acs-engine NEW
50. Archery NEW
51. ArchUnit
52. Cypress
53. git-secrets NEW
54. Headless Firefox
55. LocalStack NEW
56. Mermaid NEW
57. Prettier NEW
58. Rider NEW
59. Snyk NEW
60. UI dev environments NEW
61. Visual Studio Code
62. VS Live Share NEW

ASSESS
63. Bitrise NEW
64. Codefresh NEW
65. Grafeas NEW
66. Heptio Ark NEW
67. Jaeger NEW
68. kube-bench NEW
69. Ocelot NEW
70. Optimal Workshop NEW
71. Stanford CoreNLP NEW
72. Terragrunt NEW
73. TestCafe NEW
74. Traefik NEW
75. Wallaby.js NEW

HOLD

https://github.com/Azure/acs-engine
https://github.com/Azure/acs-engine/blob/master/docs/clusterdefinition.md
https://github.com/Azure/acs-engine/blob/master/docs/clusterdefinition.md
https://thoughtworks.com/radar/platforms/kubernetes
https://dcos.io/
https://www.openshift.com/
https://docs.docker.com/engine/swarm/
https://archerysec.info/
https://thoughtworks.com/radar/tools/zap
http://www.archunit.org/
https://thoughtworks.com/radar/techniques/architectural-fitness-function
http://evolutionaryarchitecture.com/
http://www.cypress.io/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 19

A simple tool that prevents you from
committing passwords and other sensitive
information to a git repository, it also scans
all historical revisions before making a
repository public.
(git-secrets)

Security continues to be paramount, and inadvertently
checking credentials and other secrets into source
control is a major attack vector. GIT-SECRETS is
a simple tool that prevents you from committing
passwords and other sensitive information to a git
repository. It can also scan all historical revisions
before making a repository public, if you want
to ensure you’ve never accidentally checked in a
credential. git-secrets comes with built-in support for
common AWS keys and credentials and can be set up
quickly for other providers too.

HEADLESS FIREFOX has the same maturity as that
of Headless Chrome for front-end test. Similar to
Headless Chrome, with Firefox in headless mode we
now get to enjoy browser tests without the visible UI
components, executing the UI tests suite much faster.

Testing cloud services locally is a challenge.
LocalStack solves this problem for AWS by
providing local test double implementations
of a wide range of AWS services, including S3,
Kinesis, DynamoDB and Lambda.
(LocalStack)

One of the challenges of using cloud services is being
able to develop and test locally using those services.
LOCALSTACK solves this problem for AWS by providing
local test double implementations of a wide range of
AWS services, including S3, Kinesis, DynamoDB and
Lambda. It builds on top of existing best-of-breed
tools such as Kinesalite, Dynalite and Moto and adds
isolated processes and error injection functionality.
LocalStack is very easy to use and ships with a simple
JUnit runner and a JUnit 5 extension. We’re using it in a
few of our projects and have been impressed with it.

MERMAID lets you generate diagrams from a
markdown-like markup language. Born out of need

to simplify documentation, Mermaid has grown into a
larger ecosystem with plugins for Confluence, Visual
Studio Code and Jekyll to name a few. To see how it
works, you can use the Live Editor on GitHub. Mermaid
also has a convenient command line interface that lets
you generate SVG, PNG and PDF files as output from
definition files. We’ve been using Mermaid in many
projects and we like the simplicity of describing graphs
and flowcharts with markdown and checking in the
definition files with the code repository.

An opinionated, automated code formatter
for JavaScript, Prettier increases consistency
and readability and reduces developer effort
both on formatting and engaging in wasteful
team debates about code style.
(Prettier)

PRETTIER is an opinionated, automated code
formatter for JavaScript (with growing support for
other languages). By enforcing its own opinionated
formatting style it increases consistency and readability
and reduces developer effort both on formatting and
engaging in wasteful team debates about code style.
Even though you may disagree with the stylistic choices
enforced by Prettier, we find that the benefits to the
team generally outweigh small style issues. Prettier
can be used with a precommit hook or an IDE plugin.
As with any formatter, a one-time reformatting of your
codebase can confuse your version control history, but
we feel that’s a minor drawback. We particularly like
the way Prettier flips the linter-based approach and,
borrowing from gofmt, instead of validating your code,
it ensures that your code will always be valid.

We’ve covered Visual Studio Code in the Radar since
2015, but it isn’t the only cross-platform .NET Core IDE
kid on the block anymore. Recently, RIDER, which is
part of the IDEA platform developed by JetBrains, has
gained adoption, especially by those used to the speed
and dexterity provided by ReSharper, which drives
the refactoring in Rider. Rider, however, does more
than ReSharper to bring the full IDEA platform to .NET
and increase developer productivity. Regardless of
your preferred platform, it’s worth exploring Rider as
it currently has the productivity edge on Visual Studio
Code. It’s also great to see the ecosystem alive and well,
as competition ensures these tools continue to improve.

https://github.com/awslabs/git-secrets
https://thoughtworks.com/radar/platforms/aws
http://developer.mozilla.org/en-US/Firefox/Headless_mode
https://thoughtworks.com/radar/tools/headless-chrome-for-front-end-test
https://github.com/localstack/localstack
https://thoughtworks.com/radar/platforms/aws
https://martinfowler.com/bliki/TestDouble.html
https://github.com/mhart/kinesalite
https://github.com/mhart/dynalite
https://github.com/spulec/moto
https://mermaidjs.github.io/
https://marketplace.atlassian.com/apps/1214124/mermaid-plugin-for-confluence?hosting=server&tab=overview
https://marketplace.visualstudio.com/items?itemName=vstirbu.vscode-mermaid-preview
https://marketplace.visualstudio.com/items?itemName=vstirbu.vscode-mermaid-preview
https://rubygems.org/gems/jekyll-mermaid/versions/1.0.0
https://mermaidjs.github.io/mermaid-live-editor/
https://prettier.io/
https://golang.org/cmd/gofmt/
https://thoughtworks.com/radar/tools/visual-studio-code
https://www.jetbrains.com/rider/
https://www.jetbrains.com/resharper/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 20

SNYK helps you find, fix and monitor known
vulnerabilities in npm, Ruby, Python, Scala, Golang,
.NET, PHP, Java and Docker dependency trees. When
added to your build pipeline, Snyk continuously
monitors and tests the library dependency tree against
a hosted vulnerability database and suggests the
minimal direct dependency version upgrade needed
for remediation.

As more and more teams embrace DesignOps,
practices and tooling in this space mature, too. Many
of our teams now work with what could be called UI
DEV ENVIRONMENTS, which provide a comprehensive
environment for quickly iterating on UI components,
focusing on collaboration between user experience
designers and developers. We now have a few options
in this space: Storybook, react-styleguidist, Compositor
and MDX. You can use these tools standalone in
component library or design system development as
well as embedded in a web application project. Rather
than spinning up the app, plus a BFF, plus services
simply to add a feature to a component, you can start
up the Storybook dev server instead.

VISUAL STUDIO CODE is Microsoft’s free IDE editor,
available across platforms. We’ve had good experience
using this for front-end development using React and
TypeScript, and back-end languages such as GoLang,
without having to switch between different editors. The
tooling, language support and extensions for Visual
Studio Code continue to soar and get better. We’d
particularly like to call out VS Live Share for real-time
collaboration and remote pairing. While complex
projects in statically typed languages, such as Java,
.NET or C++, will likely find better support from the
more mature IDEs from Microsoft or Jetbrains, we
find that Visual Studio Code is increasingly becoming
a tool of choice among infrastructure and front-end
development teams.

The real-time collaboration with VS Live Share
makes remote pairing easier. Particularly, we
like that it allows developers to collaborate
with their own preconfigured editor.
(VS Live Share)

VS LIVE SHARE is a suite of extensions for Visual Studio
Code and Visual Studio. The real-time collaboration
for editing and debugging of code, voice calls, sharing
a terminal and exposing local ports have reduced
some of the obstacles we’d otherwise encounter when
pairing remotely. In particular, we like that Live Share
allows developers to collaborate with each other, while
continuing to use their preconfigured editor, which
includes themes, key maps and extensions.

Building, testing and deploying mobile
applications entails a number of complex
steps, especially for a pipeline from source
code repositories to app stores. This easy-to-
set-up, domain-specific tool can reduce the
complexity and maintenance overhead.
(Bitrise)

Building, testing and deploying mobile applications
entails a number of complex steps, especially when
we consider a pipeline from source code repositories
to app stores. All these steps can be automated with
scripts and build pipelines in generic CI/CD tools.
However, for teams that focus on mobile development
and have little or no requirement to integrate with
build pipelines for back-end systems, a domain-specific
tool can reduce the complexity and maintenance
overhead. BITRISE is easy to set up and provides a
comprehensive set of prebuilt steps for most mobile
development needs.

CODEFRESH is a hosted CI server similar to CircleCI or
Buildkite. It’s container-centric, making Dockerfiles and
container-hosting clusters first-class entities. We like
that the tool encourages a pipelined delivery approach
and supports branching and merging. Early reports
from our teams are positive, but we’ve yet to see how
it works for larger projects and complex pipelines.

We’re continually on the lookout for tools
and techniques that allow delivery teams to
work independently from the rest of a larger
organization while staying within its security
and risk guardrails. Grafeas is such a tool.
(Grafeas)

https://snyk.io/
https://thoughtworks.com/radar/techniques/designops
https://storybook.js.org/
https://react-styleguidist.js.org/
https://compositor.io/
https://mdxjs.com/
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends
https://code.visualstudio.com/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/tools/vs-live-share
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare-pack
https://thoughtworks.com/radar/tools/visual-studio-code
https://thoughtworks.com/radar/tools/visual-studio-code
https://www.bitrise.io/
https://codefresh.io/
https://thoughtworks.com/radar/tools/circleci
https://thoughtworks.com/radar/tools/buildkite

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 21

We’re continually on the lookout for tools and
techniques that allow delivery teams to work
independently from the rest of a larger organization
while staying within its security and risk guardrails.
GRAFEAS is such a tool. It lets organizations publish
authoritative metadata about software artifacts—
Docker images, libraries, packages—that is then
accessible from build scripts or other automated
compliance controls. The access control mechanisms
allow for a separation of responsibility between the
teams that publish approvals or vulnerabilities and the
teams that build and deploy software. Although several
organizations, including Google and JFrog, use Grafeas
in their workflows, note that the tool is still in alpha.

As a tool for managing disaster recovery for
Kubernetes clusters and persistent volumes,
Ark is easy to use and configure, and lets you
backup and restore your clusters through a
series of checkpoints.
(Heptio Ark)

HEPTIO ARK is a tool for managing disaster recovery
for Kubernetes clusters and persistent volumes. Ark
is easy to use and configure and lets you back up and
restore your clusters through a series of checkpoints.
With Ark you can significantly reduce recovery time
in case of an infrastructure failure, easily migrate
Kubernetes resources from one cluster to another
and replicate the production environment for testing
and troubleshooting. Ark supports key backup storage
providers (including AWS, Azure and Google Cloud)
and, as of version 0.6.0, a plugin system that adds
compatibility for additional backup and volume storage
platforms. Managed Kubernetes environments,
such as GKE, provide these services out of the box.
However, if you’re operating Kubernetes either on
premise or in the cloud, take a closer look at Heptio
Ark for disaster recovery.

JAEGER is an open source distributed tracing system.
Similar to Zipkin, it’s been inspired by the Google
Dapper paper and complies with OpenTracing. Jaeger
is a younger open source project than Zipkin, but

it’s gained popularity quickly due to a larger number
of supported languages for the client libraries and
easy installation on Kubernetes. We’ve used Jaeger
successfully with Istio, integrating application traces
with Envoy on Kubernetes and like its UI. With Jaeger
joining CNCF, we anticipate a larger community
engagement effort and deeper integration with other
CNCF projects.

KUBE-BENCH is an example of an infrastructure
configuration scanner that automates checking your
Kubernetes configuration against the CIS benchmark
for K8s. It covers user authentication, permissions
and secure data among other areas. Our teams have
found kube-bench valuable in the identification of
vulnerable configurations.

OCELOT is a .NET API gateway. After three years of
development, Ocelot has built a relatively complete
feature set and an active community. Although there
is no dearth of excellent API gateways (e.g., Kong), the
.NET community appears to prefer Ocelot when building
microservices. Part of the reason is that Ocelot integrates
well with the .NET ecosystem (e.g., with IdentityServer).
Another reason may be that the .NET community has
extended Ocelot to support communication protocols
such as gRPC, Orleans and WebSocket.

UX research demands data collection and analysis to
make better decisions about the products we need to
build. OPTIMAL WORKSHOP is a suite of tools that
helps to do this digitally. Features such as first-click
or card sorting help to both validate prototypes and
improve website navigation and information display. For
distributed teams, in particular, benefit from Optimal
Workshop as it lets them conduct remote research.

Extracting meaningful business information
from text data is a key technique for
unstructured data processing. Stanford
CoreNLP, a Java-based set of natural
language processing tools, helps us to use
the latest research in the field of NLP to solve
various business problems.
(Stanford CoreNLP)

https://github.com/grafeas/grafeas
https://github.com/heptio/ark
https://thoughtworks.com/radar/platforms/kubernetes
https://github.com/heptio/ark/blob/master/docs/support-matrix.md
https://github.com/heptio/ark/blob/master/docs/support-matrix.md
https://thoughtworks.com/radar/platforms/gke
https://github.com/jaegertracing/jaeger
https://thoughtworks.com/radar/tools/zipkin
https://ai.google/research/pubs/pub36356
https://opentracing.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/istio
https://www.envoyproxy.io/
https://github.com/jaegertracing/jaeger-ui
https://www.cncf.io/blog/2017/09/13/cncf-hosts-jaeger/
https://github.com/aquasecurity/kube-bench
https://thoughtworks.com/radar/techniques/infrastructure-configuration-scanner
https://thoughtworks.com/radar/techniques/infrastructure-configuration-scanner
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
http://threemammals.com/ocelot
https://thoughtworks.com/radar/tools/kong-api-gateway
https://www.optimalworkshop.com/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 22

We have more and more projects that require
unstructured data processing. To extract meaningful
business information from text data is a key technique.
STANFORD CORENLP is a Java-based set of natural
language processing tools. It supports named-entity
recognition, relationship extraction, sentiment analysis
and text classification as well as multiple languages,
including English, Chinese and Arabic. We also find
tools usable to label corpus and training models for
our scenario. With Stanford CoreNLP, we were able
to use the latest research in the field of NLP to solve
various business problems.

We widely use Terraform as code to configure a cloud
infrastructure. TERRAGRUNT is a thin wrapper for
Terraform that implements the practices advocated
by the Terraform: Up and Running book. We’ve found
Terragrunt helpful as it encourages versioned modules
and reusability for different environments with some
handy features, including recursive code execution
in subdirectories. We’d like to see the tool evolve to
support CD practices natively, where all code can
be packaged, versioned and reused across different
environments on CD pipelines. Our team achieves this
today with workarounds.

Our teams are reporting good success with TESTCAFE,
a JavaScript-based browser test automation tool.
TestCafe allows you to write tests in JavaScript or

TypeScript and runs tests in any browser that supports
JavaScript. TestCafe has several useful features
including out-of-the-box parallel execution and HTTP
request mocking. TestCafe uses an asynchronous
execution model with no explicit wait times, which
results in much more stable test suites.

TRAEFIK is an open-source reverse proxy and load
balancer. If you’re looking for an edge proxy that
provides simple routing without all the features of
NGINX and HAProxy, Traefik is a good choice. The
router provides a reload-less reconfiguration, metrics,
monitoring and circuit breakers that are essential when
running microservices. It also integrates nicely with Let’s
Encrypt to provide SSL termination. When compared
to Traefik, tools such as NGINX and HAProxy may
require additional tooling to templatize configuration in
response to scaling, adding or removing microservices
and may, at times, require a restart which can be
annoying in production environments.

We all obsess about fast feedback during test-driven
development and we’re always looking for new ways
to make this even faster. WALLABY.JS is a commercial
extension for popular editors that provides continuous
execution of JavaScript unit tests, highlighting the results
in line next to your code. The tool identifies and runs
the minimum set of tests affected by each code change
and lets you run tests continuously as you type.

https://stanfordnlp.github.io/CoreNLP/
https://thoughtworks.com/radar/tools/terraform
https://github.com/gruntwork-io/terragrunt
https://www.oreilly.com/library/view/terraform-up-and/9781491977071/
https://devexpress.github.io/testcafe/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://traefik.io/
https://nginx.org/
https://haproxy.org/
https://thoughtworks.com/radar/tools/let-s-encrypt
https://thoughtworks.com/radar/tools/let-s-encrypt
https://wallabyjs.com/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 23

With the increased adoption of a microservices
architecture, we’re building more distributed
applications than before. Although there are many
benefits of a decoupled architecture, the complexity
and the effort involved in proving the correctness
of the overall system has dramatically increased.
JEPSEN provides much needed tooling to verify
correctness in coordination of task schedulers, test
eventual consistency, linearizability and serializability
characteristics of distributed databases. We’ve used
Jepsen in a few projects and we like the fact that we
can test drive configurations, inject and correct faults,
and verify the state of the system after recovery.

An open source framework developed by WeChat,
MMKV provides fast key-value storage for mobile apps.
It uses iOS memory-mapping features to avoid the need
to explicitly save changes and is extremely fast and

performant. In the event of an unexpected crash, MMKV
allows the app to restore the data quickly.

As a native library, MockK helps our teams
to write clean and concise tests for Kotlin
applications instead of using incommodious
wrappers of Mockito or PowerMock.
(MockK)

MOCKK is a library for mocking written in Kotlin.
Its main philosophy is to provide first-class support
for Kotlin language features such as Coroutines or
lambda blocks. As a native library, it helps our teams
to write clean and concise code on testing Kotlin
applications instead of using incommodious wrappers
of Mockito or PowerMock.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

6

62

63
64

65
66

67
68

69

71

72

73

74

75

56

57

58

50
51

49

59

60

61

28

29
30

26

27

35

36

37

41 42

43

44 45 46

32
38 39

40 31

48

47

92

81

84

86

85

93

87

88

89

90

83

80

76

77

78

79

82

91

1

2
3

4

5

7
8

9 10

11

12

13

14

15

17
18

19

20

21

22

23

24

25

16

33

34

52
53

54

55

70

LANGUAGES & FRAMEWORKS
ADOPT

TRIAL
76. Jepsen
77. MMKV NEW
78. MockK NEW
79. TypeScript

ASSESS
80. Apache Beam NEW
81. Camunda NEW
82. Flutter
83. Ktor NEW
84. Nameko NEW
85. Polly.js NEW
86. PredictionIO NEW
87. Puppeteer NEW
88. Q# NEW
89. SAFE stack NEW
90. Spek NEW
91. troposphere
92. WebAssembly
93. WebFlux NEW

HOLD

https://martinfowler.com/microservices/
https://github.com/aphyr/jepsen
https://jepsen.io/consistency/models/linearizable
https://jepsen.io/consistency/models/serializable
https://thoughtworks.com/radar/platforms/wechat
https://github.com/Tencent/MMKV
https://mockk.io/
https://www.thoughtworks.com/radar/languages-and-frameworks/kotlin
https://kotlinlang.org/docs/reference/coroutines-overview.html

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 24

TYPESCRIPT is a carefully considered language and
its consistently improving tools and IDE support
continues to impress us. With a good repository of
TypeScript-type definitions, we benefit from all the
rich JavaScript libraries while gaining type safety. This
is particularly important as our browser-based code
base continues to grow. The type safety in TypeScript
lets you use IDEs and other tools to provide deeper
context into your code and make changes and refactor
code with safety. TypeScript, being a superset of
JavaScript, and documentation and the community has
helped ease the learning curve.

APACHE BEAM is an open source unified programming
model for defining and executing both batch and
streaming data-parallel processing pipelines. Beam
provides a portable API layer for describing these
pipelines independent of execution engines (or
runners) such as Apache Spark, Apache Flink or Google
Cloud Dataflow. Different runners have different
capabilities and providing a portable API is a difficult
task. Beam tries to strike a delicate balance by actively
pulling innovations from these runners into the
Beam model and also working with the community to
influence the roadmap of these runners. Beam has
a rich set of built-in I/O transformations that cover
most of the data pipeline needs and it also provides a
mechanism to implement custom transformations for
specific use cases. The portable API and extensible IO
transformations make a compelling case for assessing
Apache Beam for data pipeline needs.

Although we tend to be skeptical of business
process model and notation (BPMN) tools,
Camunda is easy to test, version and refactor.
Integrating with Spring and Spring Boot
makes it a solid choice.
(Camunda)

We tend to be quite skeptical of business process
model and notation (BPMN) tools in general as they’re
often associated with low-code environments and
their downsides. Although the OSS BPMN framework
CAMUNDA provides some of this whizziness, it also
offers workflow and decision engines that can be
directly integrated as a library in your Java code. This
makes it easy to test, version and refactor workflows.

Camunda also integrates with Spring and Spring Boot,
among other frameworks, making it a solid choice.

FLUTTER is a cross-platform framework that enables
you to write native mobile apps in Dart. It benefits
from Dart and can be compiled into native code
and communicates with the target platform without
bridge and context switching—something that can
cause performance bottlenecks in frameworks such
as React Native or Weex. Flutter’s hot-reload feature
is impressive and provides superfast visual feedback
when editing code. Currently, Flutter is still in beta,
but we’ll continue keeping an eye on it to see how its
ecosystem matures.

Kotlin is no longer just a great fit for mobile app
development. New tools and frameworks have
emerged that demonstrate the value of the language
for web application development as well. KTOR is one
such framework. In contrast to other web frameworks
that support Kotlin, Ktor is written in Kotlin, using
language features such as coroutines which allows for
an asynchronous non-blocking implementation. The
flexibility to incorporate different tools for logging, DI
or a templates engine—in addition to its lightweight
architecture—makes Ktor an interesting option for our
teams for creating RESTful services.

One insight we gained after talking with our teams
is that Python is making a comeback across many
technology domains. In fact, it’s well on its way to
become the most-used programming language. In
part, this is driven by its adoption by data scientists
and in machine learning, but we also see teams
adopting it to build microservices. NAMEKO is a
super-lightweight microservices framework and
an alternative to Flask for writing services. Unlike
Flask, Nameko only has a limited set of features that
includes WebSocket, HTTP and AMQP support. We
also like its focus on testability. If you don’t need
features such as templating that Flask provides, then
Nameko is worth a look.

POLLY.JS is a simple tool that helps teams test
JavaScript websites and applications. Our teams
particularly like that it enables them to intercept and
stub HTTP interactions which allows for easier and
faster testing of JavaScript code without having to spin
up dependent services or components.

https://www.typescriptlang.org/
https://definitelytyped.org/
https://beam.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://thoughtworks.com/radar/platforms/google-cloud-dataflow
https://thoughtworks.com/radar/platforms/google-cloud-dataflow
http://beam.apache.org/documentation/io/built-in/
http://beam.apache.org/documentation/io/authoring-overview/
https://camunda.com/
http://flutter.io/
https://thoughtworks.com/radar/languages-and-frameworks/google-dart
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://thoughtworks.com/radar/languages-and-frameworks/weex
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://ktor.io/
https://kotlinlang.org/docs/reference/coroutines-overview.html
https://thoughtworks.com/radar/languages-and-frameworks/python-3
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://www.nameko.io/
http://flask.pocoo.org/
https://netflix.github.io/pollyjs/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 25

PREDICTIONIO is an open source machine-learning
server. Developers and data scientists can use it to
build intelligent applications for prediction. Like all
intelligent applications, PredictionIO has three parts:
data collection and storage, model training, and model
deployment and expose service. Developers could focus
on implementing data-processing logic, model algorithm
and prediction logic based on the corresponding
interfaces and liberate themselves from data storage
and model training deployment. In our experience,
PredictionIO can support both small and large volumes
of data with low concurrency. We mostly use PredictionIO
to build predictive services for small and medium-sized
enterprises or as a proof of concept when building more
complex, customized prediction engines.

In the previous Radar we mentioned Headless Chrome
for front-end test. With the adoption of Chrome
DevTools Protocol (CDP) by other browsers a new set
of libraries is emerging for browser automation and
testing. CDP allows for fine-grained control over the
browser even in headless mode. New high-level libraries
are being created using CDP for testing and automation.
PUPPETEER is one of these new libraries. It can drive
headless Chrome through a single-page application,
obtain time-trace for performance diagnostics and
more. Our teams found it faster and also more flexible
than alternatives based on WebDriver.

While still waiting for the hardware to
arrive, we can experiment with quantum
computing using languages and simulators.
Samples from Q# can give you an idea of
programming’s potential future.
(Q#)

Quantum computing currently exists in a twilight zone
of being available for testing without having arrived
yet. While we’re still waiting for the hardware to arrive,
we can experiment with and learn from languages
and simulators. Although IBM and others have been
making good progress, we’ve paid particular attention
to Microsoft’s efforts based around the Q# language
and its simulator (32 qubits locally and 40 on Azure).
If you want to start wrapping your head around the
potential future of programming, check out their set of
samples on GitHub.

The SAFE STACK—short for Suave, Azure, Fable
and Elmish—brings a number of technologies into

a coherent stack for web development. It’s built
around the F# programming language, both on the
server side and in the browser, and therefore has a
focus on functional, type-safe programming with an
asynchronous approach. It offers productivity features
such as hot reloading and lets you substitute parts of
the stack, for example, the server-side web framework
or the cloud provider.

The adoption of a new language typically spawns
the emergence of new tools that support mature
engineering practices such as test automation.
Kotlin is no exception. SPEK is a testing framework—
inspired by well-known tools such as Cucumber,
RSpec and Jasmine—that writes tests in Gherkin
and Specification, allowing teams to bring mature
practices such as behaviour-driven development into
the Kotlin space.

We’re trying out TROPOSPHERE as a way of defining
the infrastructure as code on AWS for our projects
that use AWS CloudFormation instead of Terraform.
troposphere is a Python library that allows us to
write Python code to generate CloudFormation JSON
descriptions. What we like about troposphere is that
it facilitates catching JSON errors early, applying type
checking, and unit testing and DRY composition of
AWS resources.

WEBASSEMBLY is a big step forward in the
capabilities of the browser as a code execution
environment. Supported by all major browsers and
backward compatible, it’s a binary compilation format
designed to run in the browser at near native speeds.
It opens up the range of languages you can use to
write front-end functionality, with early focus on
C, C++ and Rust, and it’s also an LLVM compilation
target. When run in the sandbox, it can interact
with JavaScript and shares the same permissions
and security model. When used with Firefox’s new
streaming compiler, it also results in faster page
initialization. Although it’s still early days, this W3C
standard is definitely one to start exploring.

After working with a functional-reactive style
on a number of applications, our teams have
come away impressed and report that the
approach improves code readability and
system throughput.
(WebFlux)

http://predictionio.apache.org/
https://thoughtworks.com/radar/tools/headless-chrome-for-front-end-test
https://thoughtworks.com/radar/tools/headless-chrome-for-front-end-test
http://devtools.chrome.com/
http://devtools.chrome.com/
https://pptr.dev/
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro?view=qsharp-preview
https://github.com/Microsoft/Quantum
https://suave.io/
https://azure.microsoft.com/
http://fable.io/
https://github.com/elmish/elmish
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://spekframework.org/
https://cucumber.io/
http://rspec.info/
https://jasmine.github.io/
https://dannorth.net/introducing-bdd
http://github.com/cloudtools/troposphere
https://thoughtworks.com/radar/tools/infrastructure-as-code
http://aws.amazon.com/cloudformation/
https://thoughtworks.com/radar/tools/terraform
http://webassembly.org/
http://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/
http://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 26

Spring Framework 5, released over a year ago,
embraces reactive streams, a standard for
asynchronous stream processing with non-
blocking backpressure. The WEBFLUX module
introduces a reactive alternative to the traditional
Spring MVC module for writing web applications
in the Spring ecosystem. After working with it on a

number of applications, our teams have come away
impressed and report that the reactive (functional)
approach improves code readability and system
throughput. They do note, though, that adopting
WebFlux requires a significant shift in thinking
and recommend to factor this into the decision to
choose WebFlux over Spring MVC.

https://www.reactive-streams.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html

Be the first to know when the
Technology Radar launches, and
keep up to date with exclusive

webinars and content.

SUBSCRIBE NOW

thght.works/Sub-EN

https://www.thoughtworks.com/radar?utm_source=techradar-pdf&utm_medium=pdf-english&utm_campaign=techradar#subscribe
http://thght.works/Sub-EN

ThoughtWorks is a technology consultancy and community of passionate,
purpose-led individuals. We help our clients put technology at the core of

their business and together create the software that matters most to them.
Dedicated to positive social change; our mission is to better humanity through

software, and we partner with many organizations striving in the same direction.

Founded 25 years ago, ThoughtWorks has grown to a company of over 5,000
people, including a products division that makes pioneering tools for software

teams. ThoughtWorks has 41 offices across 14 countries: Australia, Brazil,
Canada, Chile, China, Ecuador, Germany, India, Italy, Singapore, Spain,

Thailand, the United Kingdom and the United States.

thoughtworks.com/radar

#TWTechRadar

https://www.thoughtworks.com/
https://www.thoughtworks.com/radar

