
TECHNOLOGY
RADAR VOL.16

Insights into the
technology and trends

shaping the future

thoughtworks.com/radar
#TWTechRadar

https://www.thoughtworks.com/radar
https://www.thoughtworks.com/

CONTRIBUTORS
The Technology Radar is prepared by the
ThoughtWorks Technology Advisory Board, comprised of:

Rebecca Parsons (CTO) | Martin Fowler (Chief Scientist) | Badri Janakiraman | Bharani Subramaniam | Camilla Crispim

Erik Doernenburg | Evan Bottcher | Fausto de la Torre | Hao Xu | Ian Cartwright

James Lewis | Jonny LeRoy | Marco Valtas | Mike Mason | Neal Ford

Rachel Laycock | Scott Shaw | Srihari Srinivasan | Zhamak Dehghani

https://thoughtworks.com/profiles/erik-dornenburg
https://thoughtworks.com/profiles/camilla-crispim
https://thoughtworks.com/profiles/marco-valtas
https://thoughtworks.com/profiles/james-lewis
https://thoughtworks.com/profiles/rachel-laycock
https://thoughtworks.com/profiles/neal-ford
https://thoughtworks.com/profiles/bharani-subramaniam
https://thoughtworks.com/profiles/mike-mason
https://thoughtworks.com/profiles/martin-fowler
https://thoughtworks.com/profiles/xu-hao
https://thoughtworks.com/profiles/srihari-srinivasan
https://thoughtworks.com/profiles/jonny-leroy
https://thoughtworks.com/profiles/scott-shaw
https://thoughtworks.com/profiles/evan-bottcher
https://thoughtworks.com/profiles/rebecca-parsons
https://thoughtworks.com/profiles/fausto-de-la-torre
https://thoughtworks.com/profiles/badrinath-janakiraman
https://thoughtworks.com/profiles/ian-cartwright
https://thoughtworks.com/profiles/rebecca-parsons
https://thoughtworks.com/profiles/martin-fowler
https://thoughtworks.com/profiles/badrinath-janakiraman
https://thoughtworks.com/profiles/bharani-subramaniam
https://thoughtworks.com/profiles/camilla-crispim
https://thoughtworks.com/profiles/erik-dornenburg
https://thoughtworks.com/profiles/evan-bottcher
https://thoughtworks.com/profiles/fausto-de-la-torre
https://thoughtworks.com/profiles/xu-hao
https://thoughtworks.com/profiles/ian-cartwright
https://thoughtworks.com/profiles/james-lewis
https://thoughtworks.com/profiles/jonny-leroy
https://thoughtworks.com/profiles/marco-valtas
https://thoughtworks.com/profiles/mike-mason
https://thoughtworks.com/profiles/neal-ford
https://thoughtworks.com/profiles/rachel-laycock
https://thoughtworks.com/profiles/scott-shaw
https://thoughtworks.com/profiles/srihari-srinivasan
https://thoughtworks.com/profiles/zhamak-dehghani
https://www.thoughtworks.com/
https://thoughtworks.com/profiles/zhamak-dehghani

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 3

WHAT’S NEW?
Highlighted themes in this edition:

CONVERSATIONAL UI AND
NATURAL LANGUAGE PROCESSING

Conversation—a new way to interact with applications—
took the ecosystem by storm with tools such as Siri,
Cortana, and Allo, and then extended into homes with
devices such as Amazon Echo and Google Home.

Building conversational and natural language user
interfaces, while presenting new challenges, has obvious
benefits. The team behind the Echo intentionally
omitted a screen, forcing them to rethink many human-
machine interactions.

The conversational trend is not just limited to voice;
as messaging apps have grown to dominate both
phones and workplaces, we see conversations with
other humans being supplemented by intelligent
chatbots. As these platforms improve, they will learn
to understand the context and intent of conversations,
making interactions more lifelike and therefore more
compelling.

The explosion of interest in the marketplace and
mainstream media leads to a corresponding rise in
developer interest in this new personal exocortex
interaction mode.

INTELLIGENCE AS A SERVICE

A family of platforms burst onto the scene recently
that we call intelligence as a service. These platforms
encompass a wide variety of surprisingly powerful
utilities from voice processing to natural language
understanding, image recognition, and deep learning.

Capabilities that would have consumed costly resources
a few years ago now appear as open source or SaaS

platforms. It appears that the “cloud wars” have
moved from competing on storage and compute to
cognitive capabilities, as witnessed by the willingness
to open-source previously differentiating tools such as
Kubernetes and Mesos.

All the big players have offerings in this space, along
with interesting niche players worth assessing. Although
we still have reservations about the ethical and privacy
implications of these services, we see great promise
in utilizing these powerful tools in novel ways. Our
clients are already investigating what new horizons they
may expose by combining commodity cognition with
intelligence about their own businesses.

DEVELOPER EXPERIENCE AS THE
NEW DIFFERENTIATOR

User experience design has been a key differentiator
for technology product companies for many years. Now
the rapid rise of developer-facing tools and products,
combined with the scarcity of engineering talent, is
driving a similar focus on developer experience.

Increasingly, organizations evaluate cloud offerings
based on the amount of engineering friction they
reduce, treat APIs as products, and spin up teams
focused on engineering productivity. At ThoughtWorks,
we have always obsessed over efficient engineering
practices and promoted tools and platforms that make
developers’ lives easier, so it excites us to see the
industry beginning to adopt this approach.

Key techniques include: treating internal infrastructure
as a product that needs to be compelling enough
to compete with external offerings, focusing on self-
service, understanding the developer ergonomics of
the APIs you produce, containing “legacy in a box”, and
committing to ongoing empathetic user research of the
developers using your services.

watch the video (thght.works/IntSer)

watch the video (thght.works/DevExp)

watch the video (thght.works/ConUI)

https://www.quora.com/Why-doesn%E2%80%99t-Amazon-Echo-have-a-display
https://www.quora.com/Why-doesn%E2%80%99t-Amazon-Echo-have-a-display
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/apache-mesos
https://thoughtworks.com/radar/techniques/apis-as-a-product
https://thoughtworks.com/radar/techniques/legacy-in-a-box
http://thght.works/2mSzw3f
http://thght.works/2lleKNv
http://thght.works/2mN2Ysh

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 4

THE RISE OF PLATFORMS

The Radar themes emerge from observations and
conversations during the vetting process; recently,
while compiling the Radar, we’ve noticed the number
of new entries in the Platforms quadrant. We think
this is indicative of a broader trend in the software
development ecosystem.

Notable Silicon Valley companies have illustrated
how building a suitable platform can yield significant
benefits. Part of their success comes from finding
a useful level of encapsulation and capabilities.
Increasingly, “platform thinking” appears across the
ecosystem—from advanced capabilities highlighted on
the Radar such as natural language, to infrastructure
platforms such as Amazon.

Businesses are starting to think about platforms
when exposing select capabilities via product-inspired
APIs. Development teams think more in terms of
building platforms for integration and improved
developer experience. It seems the industry has finally
latched onto a reasonable combination of packaging,
convenience, and usefulness.

One definition that we like is that platforms should
expose a self-service API and be easy to configure and
provision within a team environment—which intersects
nicely with another emerging theme, developer
experience as the new differentiator. We expect to see
further refinement in both the definition and capabilities
of platforms in the near future.

PERVASIVE PYTHON

Python is a language that keeps popping up in
interesting places. Its ease of use as a general
programming language, combined with its strong
foundation in mathematical and scientific computing
has historically led to its grassroots adoption by the
academic and research communities. More recently,
industry trends around AI commoditization and
applications, combined with the maturity of Python 3,
have helped bring new communities into the
Python fold.

This edition of the Radar features a few Python libraries
that have helped boost the ecosystem, including Scikit-
learn in the machine learning domain; TensorFlow,
Keras, and Airflow for smart data flow graphs; and
spaCy which implements natural language processing to
help empower conversationally aware APIs. Increasingly,
we see Python bridging the gap between the scientists
and engineers within organizations, loosening past
prejudice against their favorite tools.

Architectural approaches such as microservices and
containers have eased the execution of Python in
production environments. Engineers can now deploy
and integrate specialized Python code created by
scientists through language- and technology-agnostic
APIs. This fluidity is a great step toward a consistent
ecosystem between researchers and engineers,
in contrast to the de facto practice of translating
specialized languages such as R to the production
environments.

watch the video (thght.works/RiseOTP) watch the video (thght.works/PerPyt)

https://thoughtworks.com/radar/languages-and-frameworks/python-3
https://thoughtworks.com/radar/tools/scikit-learn
https://thoughtworks.com/radar/tools/scikit-learn
https://thoughtworks.com/radar/platforms/tensorflow
http://thoughtworks.com/radar/languages-and-frameworks/keras
https://thoughtworks.com/radar/tools/airflow
https://thoughtworks.com/radar/tools/spacy
https://thoughtworks.com/radar/techniques/conversationally-aware-apis
https://thoughtworks.com/radar/techniques/microservices
https://thoughtworks.com/radar/platforms/docker
http://thght.works/2mhJFtk
http://thght.works/2mSufZy

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 5

ABOUT THE RADAR
ThoughtWorkers are passionate about technology. We
build it, research it, test it, open source it, write about
it, and constantly aim to improve it—for everyone.
Our mission is to champion software excellence and
revolutionize IT. We create and share the ThoughtWorks
Technology Radar in support of that mission. The
ThoughtWorks Technology Advisory Board, a group of
senior technology leaders in ThoughtWorks, creates
the Radar. They meet regularly to discuss the global
technology strategy for ThoughtWorks and the
technology trends that significantly impact our industry.

The Radar captures the output of the Technology
Advisory Board’s discussions in a format that provides

RADAR AT A GLANCE

Items that are new or have had significant
changes since the last Radar are
represented as triangles, while items that
have not changed are represented as circles

Our Radar is forward looking. To make room for new items, we fade items
that haven’t moved recently, which isn’t a reflection on their value but rather
our limited Radar real estate.

NEW OR CHANGED

NO CHANGE

HOLD
Proceed with caution.

4ASSESS
Worth exploring with the
goal of understanding
how it will affect your
enterprise.

3

TRIAL
Worth pursuing. It is
important to understand how
to build up this capability.
Enterprises should try this
technology on a project that
can handle the risk.

2ADOPT
We feel strongly that
the industry should be
adopting these items.
We use them when
appropriate on our
projects.

1

value to a wide range of stakeholders, from developers
to CTOs. The content is intended as a concise summary.

We encourage you to explore these technologies for
more detail. The Radar is graphical in nature, grouping
items into techniques, tools, platforms, and languages &
frameworks. When Radar items could appear in multiple
quadrants, we chose the one that seemed most
appropriate. We further group these items in four rings
to reflect our current position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

96 108

421 3

http://thoughtworks.com/radar/faq

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 6

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

56
64

60

59

67
68

70

61

110

19

20

11

13

14

4

6

2

3

512

21

22

23

18

7

15
16

17

8

9

24
26

32

35

38

41

53

27

29

46

54

47

52

31

25

28

30

34

33

36

37

39

40

42

43

44 45

48 49
50 51

55

57

66 69

71

72

73

74

75

76

77

58

62

63

65

78

83

87

88

84

93
95

99

102

103

104

81

79

85
86

89
80

82

90

91 92

94

96
97

98

100

101

New or changed
No change

THE RADAR
TECHNIQUES
ADOPT
1. Pipelines as code

TRIAL
2. APIs as a product
3. Decoupling secret management from source code NEW
4. Hosting PII data in the EU
5. Legacy in a box NEW
6. Lightweight Architecture Decision Records
7. Progressive Web Applications NEW
8. Prototyping with InVision and Sketch NEW
9. Serverless architecture

ASSESS
10. Client-directed query
11. Container security scanning
12. Conversationally aware APIs NEW
13. Differential privacy
14. Micro frontends
15. Platform engineering product teams NEW
16. Social code analysis NEW
17. VR beyond gaming

HOLD
18. A single CI instance for all teams
19. Anemic REST
20. Big Data envy
21. CI theatre NEW
22. Enterprise-wide integration test environments NEW
23. Spec-based codegen NEW

PLATFORMS
ADOPT
24. HSTS
25. Linux Security Modules

TRIAL
26. Apache Mesos
27. Auth0
28. AWS Device Farm NEW
29. AWS Lambda
30. OpenTracing NEW
31. Unity beyond gaming

ASSESS
32. .NET Core
33. Amazon API Gateway
34. api.ai NEW
35. Cassandra carefully
36. Cloud-based image comprehension NEW
37. DataStax Enterprise Graph NEW
38. Electron
39. Ethereum
40. Hyperledger NEW
41. IndiaStack
42. Kafka Streams NEW
43. Keycloak NEW
44. Mesosphere DCOS
45. Mosquitto NEW
46. Nuance Mix
47. OpenVR
48. PlatformIO NEW
49. Tango NEW
50. Voice platforms NEW
51. WebVR NEW
52. wit.ai

HOLD
53. CMS as a platform
54. Overambitious API gateways

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 7

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

56
64

60

59

67
68

70

61

110

19

20

11

13

14

4

6

2

3

512

21

22

23

18

7

15
16

17

8

9

24
26

32

35

38

41

53

27

29

46

54

47

52

31

25

28

30

34

33

36

37

39

40

42

43

44 45

48 49
50 51

55

57

66 69

71

72

73

74

75

76

77

58

62

63

65

78

83

87

88

84

93
95

99

102

103

104

81

79

85
86

89
80

82

90

91 92

94

96
97

98

100

101

New or changed
No change

TOOLS
ADOPT
55. fastlane
56. Grafana

TRIAL
57. Airflow NEW
58. Cake and Fake NEW
59. Galen
60. HashiCorp Vault
61. Pa11y
62. Scikit-learn
63. Serverless Framework NEW
64. Talisman
65. Terraform

ASSESS
66. Amazon Rekognition NEW
67. Android-x86
68. Bottled Water
69. Claudia NEW
70. Clojure.spec
71. InSpec NEW
72. Molecule NEW
73. Spacemacs NEW
74. spaCy NEW
75. Spinnaker NEW
76. Testinfra NEW
77. Yarn NEW

HOLD

LANGUAGES & FRAMEWORKS
ADOPT
78. Ember.js
79. Python 3
80. ReactiveX
81. Redux

TRIAL
82. Avro NEW
83. Elixir
84. Enzyme
85. Hangfire NEW
86. Nightwatch NEW
87. Phoenix
88. Quick and Nimble
89. Vue.js

ASSESS
90. Angular 2 NEW
91. Caffe NEW
92. DeepLearning.scala NEW
93. ECMAScript 2017
94. Instana NEW
95. JuMP
96. Keras NEW
97. Knet.jl NEW
98. Kotlin NEW
99. Physical Web
100. PostCSS NEW
101. Spring Cloud NEW
102. Three.js
103. WebRTC

HOLD
104. AngularJS

THE RADAR

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 8

Companies have wholeheartedly embraced APIs as a
way to expose business capabilities to both external
and internal developers. APIs promise the ability
to experiment quickly with new business ideas by
recombining core capabilities. But what differentiates
an API from an ordinary enterprise integration service?
One difference lies in treating APIS AS A PRODUCT,
even when the consumer is an internal system or fellow
developer. Teams that build APIs should understand
the needs of their customers and make the product
compelling to them. Usability testing and UX research
can lead to a better design and understanding of the API
usage patterns and help bring a product mindset to APIs.
APIs, like products, should be actively maintained and
supported, and, easy to use. They should have an owner
who advocates for the customer and strives for continual
improvement. In our experience, product orientation is
the missing ingredient that makes the difference between
ordinary enterprise integration and an agile business built
on a platform of APIs.

In previous Radars issues we mentioned tools such as
git-crypt and Blackbox that allow us to keep secrets
safe inside the source code. DECOUPLING SECRET
MANAGEMENT FROM SOURCE CODE is our way to
remind technologists that there are other options
for storing secrets. For example, HashiCorp vault, CI
servers and configuration management tools provide
mechanisms for storing secrets that are not linked to
the source code of an application. Both approaches are
viable and we recommend you use at least one of them
in your projects.

Teams that build APIs should understand the
needs of their customers and make the
product compelling to them. Usability testing
and UX research can lead to a better design
and understanding of the API usage patterns
and help bring a product mindset to APIs.
— APIs as a product

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

56
64

60

59

67
68

70

61

110

19

20

11

13

14

4

6

2

3

512

21

22

23

18

7

15
16

17

8

9

24
26

32

35

38

41

53

27

29

46

54

47

52

31

25

28

30

34

33

36

37

39

40

42

43

44 45

48 49
50 51

55

57

66 69

71

72

73

74

75

76

77

58

62

63

65

78

83

87

88

84

93
95

99

102

103

104

81

79

85
86

89
80

82

90

91 92

94

96
97

98

100

101

TECHNIQUES
ADOPT
1. Pipelines as code

TRIAL
2. APIs as a product
3. Decoupling secret management from source code NEW
4. Hosting PII data in the EU
5. Legacy in a box NEW
6. Lightweight Architecture Decision Records
7. Progressive Web Applications NEW
8. Prototyping with InVision and Sketch NEW
9. Serverless architecture

ASSESS
10. Client-directed query
11. Container security scanning
12. Conversationally aware APIs NEW
13. Differential privacy
14. Micro frontends
15. Platform engineering product teams NEW
16. Social code analysis NEW
17. VR beyond gaming

HOLD
18. A single CI instance for all teams
19. Anemic REST
20. Big Data envy
21. CI theatre NEW
22. Enterprise-wide integration test environments NEW
23. Spec-based codegen NEW

https://www.agwa.name/projects/git-crypt/
https://thoughtworks.com/radar/tools/blackbox
https://thoughtworks.com/radar/tools/hashicorp-vault

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 9

Working with legacy code, especially large monoliths, is
one of the most unsatisfying, high-friction experiences
for developers. Although we caution against extending
and actively maintaining legacy monoliths, they
continue to be dependencies in our environments,
and developers often underestimate the cost and
time required to develop against these dependencies.
To help reduce the friction, developers have used
virtualized machine images or container images with
Docker containers to create immutable images of
legacy systems and their configurations. The intent
is to contain the LEGACY IN A BOX for developers
to run locally and remove the need for rebuilding,
reconfiguring or sharing environments. In an ideal
scenario, teams that own legacy systems generate the
corresponding boxed legacy images through their build
pipelines, and developers can then run and orchestrate
these images in their allocated sandbox more reliably.
Although this approach has reduced the overall time
spent by each developer, it has had limited success
when the teams owning the downstream dependencies
have been reluctant to create container images for
others to use.

The increase in PROGRESSIVE WEB APPLICATIONS
(PWAs) is the latest attempt to bring back the
mobile web in response to users’ “app fatigue”.
Originally proposed by Google in 2015, PWAs are
web applications that take advantage of the latest
technologies to combine the best of web and native
mobile applications. Using a set of open standard
technologies such as, service workers, the app manifest,
and cache and push APIs, we can create applications
that are platform independent and deliver app-like
user experiences. This brings parity to web and native
applications and helps mobile developers reach users
beyond the walled garden of the app stores. Think of
PWAs as websites that act and feel like native apps.

The combined use of InVision and Sketch has changed
the way some people approach web application
development. Although these are tools, it is really the
technique of PROTOTYPING WITH INVISION AND
SKETCH that makes this blip significant. Creating
rich, clickable prototypes as the starting point for
implementing front-end and back-end behavior helps
speed up the development and eliminates churn in the
implementation details. This combined use of these

tools strikes the right balance between premature
elaboration of visual detail and capturing early user
feedback on the interactive experience.

A SERVERLESS ARCHITECTURE approach replaces
long-running virtual machines with ephemeral
compute power that comes into existence on request
and disappears immediately after use. Our teams
like the serverless approach; it’s working well for us
and we consider it a valid architectural choice. Note
that serverless doesn’t have to be an all-or-nothing
approach: some of our teams have deployed a new
chunk of their systems using serverless while sticking
to a traditional architectural approach for other pieces.
Although AWS Lambda is almost synonymous with
serverless, the other major cloud providers all have
similar offerings, and we also recommend assessing
niche players such as webtask.

Technologies such as Amazon Alexa, Google
Voice and Siri have dramatically lowered
the bar for voice-based interaction with
software. However, a more conversational
style of input (voice or text) can be hard to
build on top of many existing APIs
— Conversationally aware APIs

Technologies such as Amazon Alexa, Google Voice
and Siri have dramatically lowered the bar for voice-
based interaction with software. However, a more
conversational style of input (voice or text) can be hard
to build on top of many existing APIs, especially when
it comes to a more stateful style of interaction where a
follow-up interaction needs to be aware of the overall
conversational context. In this style of interaction,
for example, we’d like to inquire about trains from
Manchester to Glasgow and then being able to ask
“What time is the first departure?” without having to
give the context of the conversation again. Normally
this context would be present in the initial response
we send back to a browser, but in the case of voice
interfaces we need to handle this context elsewhere.
CONVERSATIONALLY AWARE APIS can be an example
of the backend for front-end pattern where the front-
end is a voice or chat platform. This type of API can
handle the specifics of this style of interaction by

https://thoughtworks.wistia.com/medias/ogq5b8d80y
https://thoughtworks.wistia.com/medias/ogq5b8d80y
https://thoughtworks.com/radar/techniques/machine-image-as-a-build-artifact
https://thoughtworks.com/radar/platforms/docker
https://w3c.github.io/ServiceWorker/
https://www.w3.org/TR/appmanifest/
http://www.martinfowler.com/articles/serverless.html
https://thoughtworks.com/radar/platforms/aws-lambda
https://webtask.io/
https://developer.amazon.com/alexa
https://voice.google.com/
https://voice.google.com/
https://developer.amazon.com/alexa
https://voice.google.com/
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 10

managing conversation states while calling underlying
services on behalf of the voice front-end.

The adoption of cloud and DevOps, while increasing the
productivity of teams who can now move more quickly
with reduced dependency on centralized operations
teams and infrastructure, also has constrained teams
who lack the skills to self-manage a full application and
operations stack. Some organizations have tackled
this challenge by creating PLATFORM ENGINEERING
PRODUCT TEAMS. These teams operate an internal
platform which enables delivery teams to self-service
deploy and operate systems with reduced lead time and
stack complexity. The emphasis here is on API-driven
self-service and supporting tools, with delivery teams
still responsible for supporting what they deploy onto
the platform. Organizations that consider establishing
such a platform team should be very cautious not to
accidentally create a separate DevOps team, nor should
they simply relabel their existing hosting and operations
structure as a platform.

SOCIAL CODE ANALYSIS enriches our understanding
of the code quality by overlaying a developer’s behavior
with the structural analysis of the code. It uses data
from version control systems, such as frequency and
time of the change as well as the person making the
change. You can choose to write your own scripts to
analyze such data or use tools such as CodeScene.
CodeScene can help you gain a better understanding
of your software systems by identifying hotspots and
complex, hard-to-maintain subsystems, coupling
between distributed subsystems through temporal
coupling, as well as the view of Conway’s law in your
organization. We believe that with technology trends
such as distributed systems, microservices and
distributed teams the social dimension of our code is
vital in our holistic understanding of our systems’ health.

The idea of virtual reality has been around for more
than 50 years, and with successive advancements in
computing technology many ideas have been hyped
and explored. We believe that we’ve reached a tipping
point. Reasonably affordable consumer-oriented VR
headsets were shipped to the market last year, and
modern graphics cards provide sufficient power to
create immersive experiences with them. The headsets

are mainly targeted at video game enthusiasts, but
we’re convinced that they’ll open the doors to many
possibilities for VR BEYOND GAMING. Teams without
experience in building video games should not
underestimate the effort and skill required to create
good 3-D models and convincing textures.

The idea of virtual reality has been around
for more than 50 years, and with successive
advancements in computing technology
many ideas have been hyped and explored.
We believe that we’ve reached a tipping point.
— VR beyond gaming

We’re compelled to caution, again, against creating
A SINGLE CI INSTANCE FOR ALL TEAMS. While it’s
a nice idea in theory to consolidate and centralize
Continuous Integration (CI) infrastructure, in reality we
do not see enough maturity in the tools and products
in this space to achieve the desired outcome. Software
delivery teams which must use the centralized CI
offering regularly have long delays depending on a
central team to perform minor configuration tasks, or
to troubleshoot problems in the shared infrastructure
and tooling. At this stage, we continue to recommend
that organizations limit their centralized investment
to establishing patterns, guidelines and support for
delivery teams to operate their own CI infrastructure.

We’ve long been advocates of continuous integration
(CI), and we were pioneers in building CI server
programs to automatically build projects on check-ins.
Used well, these programs run as a daemon process
on a shared project mainline that developers commit
to daily. The CI server builds the project and runs
comprehensive tests to ensure the whole software
system is integrated and is in an always-releasable
state, thus satisfying the principles of continuous
delivery. Sadly, many developers simply set up a CI
server and falsely assume they are “doing CI” when
in reality they miss out on all the benefits. Common
failure modes include: running CI against a shared
mainline but with infrequent commits, so integration
isn’t really continuous; running a build with poor test
coverage; allowing the build to stay red for long periods;

https://thoughtworks.com/radar/techniques/separate-devops-team
https://thoughtworks.com/radar/platforms/superficial-private-cloud
https://thoughtworks.com/radar/platforms/superficial-private-cloud
http://www.empear.com/
https://martinfowler.com/articles/continuousIntegration.html
https://en.wikipedia.org/wiki/CruiseControl
http://www.martinfowler.com/articles/continuousIntegration.html#EveryoneCommitsToTheMainlineEveryDay
http://www.martinfowler.com/articles/continuousIntegration.html#EveryoneCommitsToTheMainlineEveryDay
http://www.martinfowler.com/articles/continuousIntegration.html#EveryCommitShouldBuildTheMainlineOnAnIntegrationMachine
http://www.martinfowler.com/articles/continuousIntegration.html#MakeYourBuildSelf-testing
https://continuousdelivery.com/
https://continuousdelivery.com/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 11

or running CI against feature branches which results in
continuous isolation. The ensuing “CI THEATRE” might
make people feel good, but would fail any credible CI
certification test.

Sadly, many developers simply set up a CI
server and falsely assume they are “doing CI”
when in reality they miss out on all the
benefits. The ensuing “CI THEATRE” might
make people feel good, but would fail any
credible CI certification test.
— CI theatre

When the enterprise-wide quarterly or monthly releases
were considered best practice, it was necessary to
maintain a complete environment for performing
testing cycles prior to deployment to production.
These ENTERPRISE-WIDE INTEGRATION TEST
ENVIRONMENTS (often referred to as SIT or Staging)
are a common bottleneck for continuous delivery today.
The environments themselves are fragile and expensive
to maintain, often with components that need manual
configuration by a separate environment management
team. Testing in the staging environment provides
unreliable and slow feedback, and testing effort is

duplicated with what can be performed on components
in isolation. We recommend that organizations
incrementally create an independent path to
production for key components. Important techniques
include contract testing, decoupling deployment from
release, focus on mean time to recovery and testing in
production.

Back in the days when SOAP held sway in the enterprise
software industry, the practice of generating client
code from WSDL specs was an accepted—even
encouraged—practice. Unfortunately, the resulting
code was often complex, untestable, difficult to modify
and frequently didn’t work across implementation
platforms. With the advent of REST, we found it better
to evolve API clients that use the tolerant reader pattern
for extracting and processing only the fields needed.
Recently we have observed a disturbing return to
old habits with developers generating code from API
specifications written in Swagger or RAML—a practice
that we refer to as SPEC-BASED CODEGEN. Although
such tools are very useful for driving the design of APIs
and for extracting documentation, we caution against
the tempting shortcut of simply generating client code
directly from these specifications. The chances are that
such code will be difficult to test and maintain.

http://paulhammant.com/2017/02/14/fake-news-via-continuous-isolation/
https://martinfowler.com/bliki/ContinuousIntegrationCertification.html
https://martinfowler.com/bliki/ContinuousIntegrationCertification.html
https://thoughtworks.com/radar/techniques/consumer-driven-contract-testing
https://thoughtworks.com/radar/techniques/decoupling-deployment-from-release
https://thoughtworks.com/radar/techniques/decoupling-deployment-from-release
https://thoughtworks.com/radar/techniques/focus-on-mean-time-to-recovery
https://thoughtworks.com/radar/techniques/qa-in-production
https://thoughtworks.com/radar/techniques/qa-in-production
https://martinfowler.com/bliki/TolerantReader.html
https://thoughtworks.com/radar/tools/swagger
https://thoughtworks.com/radar/tools/raml

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 12

The Principle of Least Privilege encourages us to restrict
software components to access only the resources that
they need. By default, however, a Linux process can do
anything its running user can do—from binding to arbitrary
ports to spawning new shells. The LINUX SECURITY
MODULES (LSM) framework, which allows for security
extensions to be plugged into the kernel, has been used
to implement MAC on Linux. SELinux and AppArmor
are the predominant and best-known LSM-compatible
implementations that ship with the kernel. We recommend
that teams learn to use one of these security frameworks
(which is why we placed it in the Adopt ring). They help
teams assess questions about who has access to what
resources on shared hosts, including contained services.
This conservative approach to access management will help
teams build security into their SDLC processes.

AMAZON API GATEWAY enables developers to expose
API services to Internet clients. It offers the usual
API gateway features including traffic management,
monitoring, authentication and authorization. Our
teams have had positive experiences using this service
to front AWS Lambda as part of serverless architectures.
On the other hand, we have had more challenges using
it as a more general purpose gateway to front HTTP/
HTTPS endpoints running on EC2—where we have
been stymied by a lack of interoperability with VPCs and
difficulty in establishing client cert authentication with
the gateway. Due to this mixed experience, we would
like to advise teams to trial using AWS API Gateway with
Lambda but assess suitability when using it in a more
general setting.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

56
64

60

59

67
68

70

61

110

19

20

11

13

14

4

6

2

3

512

21

22

23

18

7

15
16

17

8

9

24
26

32

35

38

41

53

27

29

46

54

47

52

31

25

28

30

34

33

36

37

39

40

42

43

44 45

48 49
50 51

55

57

66 69

71

72

73

74

75

76

77

58

62

63

65

78

83

87

88

84

93
95

99

102

103

104

81

79

85
86

89
80

82

90

91 92

94

96
97

98

100

101

PLATFORMS
ADOPT
24. HSTS
25. Linux Security Modules

TRIAL
26. Apache Mesos
27. Auth0
28. AWS Device Farm NEW
29. AWS Lambda
30. OpenTracing NEW
31. Unity beyond gaming

ASSESS
32. .NET Core
33. Amazon API Gateway
34. api.ai NEW
35. Cassandra carefully
36. Cloud-based image comprehension NEW
37. DataStax Enterprise Graph NEW
38. Electron
39. Ethereum
40. Hyperledger NEW
41. IndiaStack
42. Kafka Streams NEW
43. Keycloak NEW
44. Mesosphere DCOS
45. Mosquitto NEW
46. Nuance Mix
47. OpenVR
48. PlatformIO NEW
49. Tango NEW
50. Voice platforms NEW
51. WebVR NEW
52. wit.ai

HOLD
53. CMS as a platform
54. Overambitious API gateways

https://www.kernel.org/doc/Documentation/security/LSM.txt
https://www.kernel.org/doc/Documentation/security/LSM.txt
https://aws.amazon.com/api-gateway/
https://thoughtworks.com/radar/platforms/aws-lambda
https://thoughtworks.com/radar/techniques/serverless-architecture

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 13

The huge number of mobile devices makes it almost
impossible for companies to test their mobile apps on
all of them. Enter AWS DEVICE FARM, an app-testing
service that enables you to run and interact with your
Android, iOS and web apps on a wide variety of physical
devices that are hosted in the cloud simultaneously.
Detailed logs, performance graphs and screenshots
are generated during each run to provide general and
device-specific feedback. The service offers a lot of
flexibility by allowing the state and configuration of each
device to be altered in order to reproduce very specific
test scenarios. Our teams are using AWS Device Farm to
run end-to-end tests on devices with the largest install
base for their apps.

As monolithic applications are being replaced
with more complex microservice ecosystems,
tracing requests across multiple services is
becoming the norm.
— OpenTracing

As monolithic applications are being replaced with
more complex (micro)service ecosystems, tracing
requests across multiple services is becoming the
norm. Luckily OPENTRACING is rapidly becoming the
de facto standard for distributed tracing. Developed
by Uber, Apple, Yelp and various other big players, it
supports multiple tracers such as Zipkin, Instana, and
Jaeger. OpenTracing currently provides vendor-neutral
implementation in six languages: Go, JavaScript, Java,
Python, Objective-C and C++.

In parallel with the recent surge of chatbots and
voice platforms, we’ve seen a proliferation of
tools and platforms such as API.AI that provide a
service to extract intent from text and management
of conversational flow that you can hook into.
Recently acquired by Google, this “natural-language-
understanding as a service” offering competes with
other players in this space such as wit.ai and
Amazon’s Lex.

Image comprehension used to be a dark art and
required a team of onsite data scientists. In recent
years, however, we’ve come closer to solving problems
such as image and facial classification/categorization,
facial comparisons, facial landmark identification,
and facial recognition. CLOUD-BASED IMAGE
COMPREHENSION provides access to machine-
learning capabilities through services such as Amazon

Rekognition, Microsoft Computer Vision API and Google
Cloud Vision API which can supplement AR applications
and anything involving photo tagging and classification.

We’ve had some early successes with DATASTAX
ENTERPRISE GRAPH (DSE Graph) for handling large
graph databases. Built on top of Cassandra, DSE Graph
targets the type of large data sets where our longtime
favorite Neo4j begins to show some limitations. This
scale has its trade-offs; for example, you lose the ACID
transactions and run-time schema-free nature of Neo4j,
but access to the underlying Cassandra tables, the
integration of Spark for analytical workloads, and the
powerful TinkerPop/Gremlin query language make this
an option worth considering.

The hype seems to have peaked for blockchains and
cryptocurrencies, as evidenced by the slowdown of
previous firehose-scale announcements in this area,
and we expect some of the more speculative efforts to
die out over time. One of the blockchains, ETHEREUM,
while not universally popular among diehard blockchain
aficionados, appears in increasing numbers in new
initiatives. Ethereum is a public blockchain with a built-in
programming language allowing developers to build
“smart contracts”, which are algorithmic movements
of ether (the Ethereum cryptocurrency) in response
to activity happening on the blockchain. R3CEV, the
consortium building blockchain tech for banks, built
its first proofs of concept on Ethereum. Ethereum
has been used to build a distributed autonomous
organization (DAO)—one of the first “algorithmic
corporations”—although a recent heist of $150
million in the ether demonstrates that the blockchains
and cryptocurrencies are still the Wild West of the
technology world.

HYPERLEDGER is a platform built around blockchain
technologies. It consists of a blockchain implementation
named Fabric and other associated tools. Disregarding
the hype surrounding blockchain, our teams have
found it easy to get started with these tools. The fact
that it is an open source platform supported by the
Linux Foundation also adds to our excitement about
Hyperledger.

KAFKA STREAMS is a lightweight library for building
streaming applications. It’s been designed with the
goal of simplifying stream processing enough to
make it easily accessible as a mainstream application
programming model for asynchronous services. It can

https://aws.amazon.com/device-farm/
https://thoughtworks.com/radar/techniques/microservices
http://opentracing.io/
https://thoughtworks.com/radar/techniques/microservices
http://opentracing.io/
https://thoughtworks.com/radar/tools/zipkin
https://thoughtworks.com/radar/languages-and-frameworks/instana
https://uber.github.io/jaeger/
https://thoughtworks.com/radar/platforms/voice-platforms
https://api.ai/
https://thoughtworks.com/radar/platforms/wit-ai
https://aws.amazon.com/lex/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
https://cloud.google.com/vision/
https://cloud.google.com/vision/
http://www.datastax.com/products/datastax-enterprise-graph
http://www.datastax.com/products/datastax-enterprise-graph
https://thoughtworks.com/radar/platforms/cassandra-carefully
https://thoughtworks.com/radar/platforms/neo4j
http://tinkerpop.apache.org/
https://www.ethereum.org/
http://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
http://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 14

be a good alternative in scenarios where you want
to apply a stream processing model to your problem
without embracing the complexity of running a cluster
(usually introduced by full-fledged stream processing
frameworks).

In a microservices or any other distributed architecture,
one of the most common needs is to secure
the services or APIs through authentication and
authorization features. This is where Keycloak comes
in. KEYCLOAK is an open source identity and access
management solution that makes it easy to secure
applications or microservices with little to no code. Out
of the box, it supports single sign-on, social login, and
standard protocols such as OpenID Connect, OAuth2
and SAML.

MESOSPHERE DCOS is a platform built on top of Mesos
that abstracts away your underlying infrastructure for
containerized applications as well as for applications
you don’t want to run inside Docker. This may be overkill
for more modest deployments, but we’re beginning
to see successes with both the commercial and open
source versions. We particularly like that it facilitates
portability between different cloud providers as well
as dedicated hardware, and that for containerized
workloads you’re not tied into one container
orchestration framework. Although upgrades can be a
little more complex than we would like, the overall stack
is stabilizing nicely.

In our experience—for Internet of Things (IoT) solutions
where a lot of devices communicate with each other
and/or a central data hub—the MQTT connectivity
protocol has proven itself. We’ve also come to like
the MOSQUITTO MQTT broker. It might not satisfy all
demands, particularly with regard to scalability, but
its compact nature and easy setup makes it ideal for
development and testing purposes.

PLATFORMIO provides a rich ecosystem for IoT
development by providing cross-platform builds, library
management and good integration with existing IDEs.
The intelligent code completion and Smart Code Linter
with built-in terminal and serial port monitor greatly
enhances the developer experience. It also organizes
and maintains thousands of libraries and provides a

clean dependency manager with semantic versioning to
ease IoT development. We’ve started using PlatformIO
in a few IoT projects and we really like it for its simplicity
and wide support of platforms and boards.

Alongside virtual reality (VR), which has a relatively high
bar to entry due to hardware requirements and the
effort to create virtual worlds, alternate reality (AR) and
mixed reality (MR) also entered into the mainstream
last year. Pokémon Go provided evidence that regular
smartphones are sufficient to create compelling AR/
MR experiences. TANGO is a new hardware sensor
technology for mobile phones that further enhances
the possibilities for AR/MR on phones. It allows apps
to acquire detailed 3-D measurements of the user’s
surroundings so that virtual objects can be placed and
rendered more convincingly on the camera feed. The
first phones with Tango technology are now available.

VOICE PLATFORMS such as Amazon Alexa and Google
Home are riding high on the hype cycle; some even
herald the ubiquity of the conversational voice interface.
We’re already integrating conversational UIs into
products and seeing the impact of this new interaction
in how we design interfaces. Alexa specifically was built
from the ground up without a screen and treats the
conversational UI as first-class. But it’s still too early to
believe the hype, and we expect more big players to get
in the game.

We’re already integrating conversational UIs
into products and seeing the impact of this
new interaction in how we design interfaces.
— Voice platforms

WEBVR is an experimental JavaScript API that enables
you to access VR devices through your browser. It has
garnered support from the community and is available
through nightly builds as well as in some release
versions. If you are looking to build VR experiences in
your browser, then this is a great place to start. This
technology alongside complementary tools such
Three.js, A-Frame, ReactVR, Argon.js and Awe.js brings
AR experiences to the browser. The flurry of tools in this
space, alongside Internet commission standards, could
help promote stronger adoption of AR and VR.

https://thoughtworks.com/radar/techniques/microservices
http://www.keycloak.org/
https://mesosphere.com/product/
https://thoughtworks.com/radar/platforms/apache-mesos
https://dcos.io/
https://dcos.io/
http://mosquitto.org/
http://platformio.org/
http://platformio.org/lib
http://platformio.org/platforms
http://platformio.org/boards
https://get.google.com/tango/
https://developer.amazon.com/alexa
https://developers.google.com/actions/
https://developers.google.com/actions/
https://webvr.info/
https://thoughtworks.com/radar/languages-and-frameworks/three-js
https://aframe.io/
https://github.com/facebookincubator/react-vr
https://github.com/argonjs/argon
https://github.com/awe-media/awe.js

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 15

Web application developers have it easy when it comes
to simplifying and automating diverse application
workflows; they can choose from a variety of solutions
to help automate release processes. When developing
for mobile, however, we’re dealing with two operating
systems with two different ways of building, testing,
distribution, generating screenshots, signing and
distributing applications. To help ease the pain, our
teams have adopted FASTLANE as the go-to tool to
automate the release process for iOS and Android
applications. Using simple configurations and multiple
pipelines, they can achieve continuous delivery for
mobile development.

AIRFLOW is a tool to programmatically create, schedule
and monitor data pipelines. By treating Directed Acyclic
Graphs (DAGs) as code, it encourages maintainable,
versionable and testable data pipelines. We’ve
leveraged this configuration in our projects to create

dynamic pipelines that resulted in lean and explicit data
workflows. Airflow makes it easy to define your operators
and executors and to extend the library so that it fits the
level of abstraction that suits your environment.

Our teams have adopted fastlane as the go-to
tool to automate the release process for iOS
and Android applications.
— fastlane

MSBuild has been the primary build system in the .NET
ecosystem since its introduction in 2005; however,
it suffers from many of the same weaknesses we’ve
previously called out in Maven. The .NET community has
started to develop alternatives to MSBuild which are
easier to maintain and more flexible, and evolve more
fluidly as a project grows. Two of these alternatives are
CAKE AND FAKE. Cake uses a DSL built in C#, while

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

56
64

60

59

67
68

70

61

110

19

20

11

13

14

4

6

2

3

512

21

22

23

18

7

15
16

17

8

9

24
26

32

35

38

41

53

27

29

46

54

47

52

31

25

28

30

34

33

36

37

39

40

42

43

44 45

48 49
50 51

55

57

66 69

71

72

73

74

75

76

77

58

62

63

65

78

83

87

88

84

93
95

99

102

103

104

81

79

85
86

89
80

82

90

91 92

94

96
97

98

100

101

TOOLS
ADOPT
55. fastlane
56. Grafana

TRIAL
57. Airflow NEW
58. Cake and Fake NEW
59. Galen
60. HashiCorp Vault
61. Pa11y
62. Scikit-learn
63. Serverless Framework NEW
64. Talisman
65. Terraform

ASSESS
66. Amazon Rekognition NEW
67. Android-x86
68. Bottled Water
69. Claudia NEW
70. Clojure.spec
71. InSpec NEW
72. Molecule NEW
73. Spacemacs NEW
74. spaCy NEW
75. Spinnaker NEW
76. Testinfra NEW
77. Yarn NEW

HOLD

https://fastlane.tools/
https://thoughtworks.com/radar/techniques/continuous-delivery-cd
https://airflow.incubator.apache.org/
https://thoughtworks.com/radar/tools/maven
http://cakebuild.net/
http://fsharp.github.io/FAKE/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 16

Fake uses F#. Each has seen significant growth over the
last year and has proven to be a viable alternative to
MSBuild for orchestrating common build tasks in
.NET projects.

The .NET community has started to develop
alternatives to MSBuild which are easier to
maintain and more flexible, and evolve more
fluidly as a project grows.
— Cake and Fake

SCIKIT-LEARN is not a new tool (it is approaching its
tenth birthday); what is new is the rate of adoption
of machine-learning tools and techniques outside of
academia and major tech companies. Providing a robust
set of models and a rich set of functionality, Scikit-learn
plays an important role in making machine-learning
concepts and capabilities more accessible to a broader
(and often non-expert) audience.

The popular SERVERLESS FRAMEWORK provides
tooling for scaffolding and deployment of serverless
applications, primarily using AWS Lambda and other
AWS offerings. Serverless Framework provides template
support for JavaScript, Python, Java and C#, and has an
active community that contributes plugins that extend
the framework. The framework also supports the
Apache incubator project OpenWhisk as an alternative
to AWS Lambda.

AMAZON REKOGNITION is one of the cloud-based
image comprehension tools we’ve mentioned elsewhere in
this Radar. What we like about it is that Amazon has taken
a somewhat novel approach to making faces anonymous
(using GUIDs) from AWS to accommodate some of the
privacy concerns that come with facial recognition.

The combination of AWS Lambda with Amazon API
Gateway has had a big impact on how we deploy
services and APIs. However, even in this serverless
configuration, the amount of configuration required
to wire things together is not trivial. CLAUDIA is a tool
which automates deployment of AWS Lambda functions
written in JavaScript and associated API Gateway

configurations. It provides reasonable defaults, and our
teams have found it allows them to get started quickly
with Lambda-based microservices.

How does a business hand autonomy to delivery
teams while still making sure their deployed solutions
are safe and compliant? How do you ensure that
servers, once deployed, remain secure and compliant
over their operational lifetime? These are the
problems that InSpec tries to address. INSPEC is an
infrastructure testing tool inspired by Serverspec, but
with modifications that make the tool more useful for
security professionals who need to ensure compliance
across thousands of servers. Individual tests can be
combined into complete security profiles and run
remotely from a command line. InSpec is useful for
developers but extends to testing deployed production
infrastructure continuously, moving toward QA in
production.

MOLECULE is designed to aid in the development and
testing of Ansible roles. By building the scaffolding
for running Ansible role tests on a virtual machine or
container of choice, we don’t have to setup our testing
environment manually. Molecule leverages Vagrant,
Docker, and OpenStack to manage virtual machines
or containers, and supports Serverspec, Testinfra, or
Goss to run the tests. The default steps in the sequence
facility model include: virtual machine management,
Ansible linting, idempotence testing and convergence
testing. Although it is a fairly young project, we see a
great potential for its usage.

As any Emacs fan will tell you, Emacs is more than
a text editor; it is a platform for character-mapped
applications. Over the past few years, there has been
an explosion of new developments on this platform,
but we think SPACEMACS deserves particular attention.
Spacemacs provides an introduction to the Emacs
platform, with a new keyboard user-interface, simplified
customization layers, and a curated distribution of
Emacs packages. One of the project’s aims is to be the
best of worlds by combining the Vim UI with the internal
reprogrammability of Emacs. We consider developer
productivity tools to be a vital part of effective software

http://cakebuild.net/
http://fsharp.github.io/FAKE/
http://scikit-learn.org/stable/
https://serverless.com/
https://thoughtworks.com/radar/platforms/aws-lambda
https://aws.amazon.com/rekognition/
https://thoughtworks.com/radar/platforms/aws-lambda
https://thoughtworks.com/radar/platforms/amazon-api-gateway
https://thoughtworks.com/radar/platforms/amazon-api-gateway
https://claudiajs.com/
https://thoughtworks.com/radar/tools/serverspec
https://thoughtworks.com/radar/techniques/qa-in-production
https://thoughtworks.com/radar/techniques/qa-in-production
https://github.com/metacloud/molecule
https://thoughtworks.com/radar/tools/ansible
https://thoughtworks.com/radar/tools/vagrant
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/platforms/openstack
https://thoughtworks.com/radar/tools/serverspec
https://thoughtworks.com/radar/tools/testinfra
https://github.com/aelsabbahy/goss
http://www.spacemacs.org/
https://martinfowler.com/bliki/InternalReprogrammability.html
https://martinfowler.com/bliki/InternalReprogrammability.html

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 17

development, and if you haven’t considered Emacs for
a while, we suggest you take a look at how Spacemacs
rethinks this classic development platform.

SPACY is a Natural Language Processing (NLP) library
written in Python. It is a high-performance library,
intended for use by developers in production, and
applies NLP models suited for processing text that
often mixes in emoticons and inconsistent punctuation
marks. Unlike other NLP frameworks, spaCy is a
pluggable library and not a platform; it is aimed at
production applications rather than model training
for research. It plays well with TensorFlow and the
rest of the Python AI ecosystem. We’ve used spaCy in
the enterprise context to build a search engine that
takes human language queries and helps users make
business decisions.

Netflix has open sourced SPINNAKER, its microservices
continuous delivery (CD) platform. Compared to
other CI/CD platforms, Spinnaker implements cluster
management and deployment of baked images to the
cloud as first-class features. It supports out-of-the-box
deployment and cluster management for multiple cloud
providers such as Google Cloud Platform, AWS and
Pivotal Cloud Foundry. You can integrate Spinnaker with
Jenkins to run a Jenkins job build. We like Spinnaker’s
opinionated approach for deploying microservices to the
cloud—with the exception that Spinnaker’s pipelines are
created via a user interface (UI) and cannot be configured
as code.

Given the wide use of infrastructure tools today, it
should come as no surprise that infrastructure as code
has increased in current projects. With this tendency
comes the need for testing this code. With TESTINFRA
you can test the actual state of your servers configured
manually or by tools such as Ansible, Puppet and
Docker. Testinfra aims to be a Serverspec equivalent
in Python and is written as a plugin to the Pytest test
engine.

Given the wide use of infrastructure tools
today, it should come as no surprise that
infrastructure as code has increased in current
projects.
— Testinfra

YARN is a new package manager that replaces the
existing workflow for the npm client while remaining
compatible with the npm registry. With the npm
client, we may end up with a different tree structure
under node_modules based on the order that
dependencies are installed. This nondeterministic
nature can cause “works on my machine” problems.
By breaking the installation steps into resolution,
fetching and linking, Yarn avoids these issues using
deterministic algorithms and lockfiles and thus
guarantees repeatable installations. We’ve also
seen significantly faster builds in our continuous
integration (CI) environment because of Yarn caching
all the packages it downloads.

https://spacy.io/
https://thoughtworks.com/radar/platforms/tensorflow
http://techblog.netflix.com/2015/11/global-continuous-delivery-with.html
http://www.spinnaker.io/
https://thoughtworks.com/radar/platforms/pivotal-cloud-foundry
https://thoughtworks.com/radar/tools/ansible
https://showcase.webteam.thoughtworks.com/radar/tools/puppet
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/tools/serverspec
https://yarnpkg.com/en/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 18

PYTHON 3 introduced many useful features that
are not backward compatible with Python 2.x. It also
removed numerous Python 2.x features that were
maintained for backward compatibility, making Python
3 easier to learn and use and more consistent with the
rest of the language. Our experience using Python 3 in
domains such as machine learning and web application
development shows that both the language and most
of its supporting libraries have matured for adoption.
We were able to fork and patch minor issues of
existing libraries or avoided using incompatible Python
2.x libraries that had been abandoned. If you are
developing in Python we strongly encourage you to use
Python 3.

Distributed systems often utilize multithreading, event-
based communication and nonblocking I/O to improve
the overall system efficiency. These programming
techniques impose challenges such as low-level
threading, synchronization, thread safety, concurrent
data structures, and non-blocking I/O. The open source
REACTIVEX library beautifully abstracts away these

concerns, provides the required application plumbing,
and extends the observable pattern on streams of
asynchronous events. ReactiveX also has an active
developer community and supports a growing list of
languages, the most recent addition being RxSwift. It also
implements binding to mobile and desktop platforms.

The open source REACTIVEX library beautifully
abstracts away these concerns—low-level
threading, synchronization, thread safety,
concurrent data structures, and non-blocking
I/O—to provide the required application
plumbing, and extends the observable pattern
on streams of asynchronous events.
— ReactiveX

AVRO is a framework for data serialization. By storing
schema along with the message content, it encourages
schema evolution. Producers can edit field names, add
new fields or delete existing fields and Avro guarantees

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

56
64

60

59

67
68

70

61

110

19

20

11

13

14

4

6

2

3

512

21

22

23

18

7

15
16

17

8

9

24
26

32

35

38

41

53

27

29

46

54

47

52

31

25

28

30

34

33

36

37

39

40

42

43

44 45

48 49
50 51

55

57

66 69

71

72

73

74

75

76

77

58

62

63

65

78

83

87

88

84

93
95

99

102

103

104

81

79

85
86

89
80

82

90

91 92

94

96
97

98

100

101

LANGUAGES & FRAMEWORKS
ADOPT
78. Ember.js
79. Python 3
80. ReactiveX
81. Redux

TRIAL
82. Avro NEW
83. Elixir
84. Enzyme
85. Hangfire NEW
86. Nightwatch NEW
87. Phoenix
88. Quick and Nimble
89. Vue.js

ASSESS
90. Angular 2 NEW
91. Caffe NEW
92. DeepLearning.scala NEW
93. ECMAScript 2017
94. Instana NEW
95. JuMP
96. Keras NEW
97. Knet.jl NEW
98. Kotlin NEW
99. Physical Web
100. PostCSS NEW
101. Spring Cloud NEW
102. Three.js
103. WebRTC

HOLD
104. AngularJS

http://py3readiness.org/
http://reactivex.io/
https://en.wikipedia.org/wiki/Observer_pattern
https://github.com/ReactiveX/RxSwift
https://avro.apache.org/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 19

that the clients continue to consume the messages.
Having a schema allows data to be written without
overhead which results in compact data encoding
and faster data processing. Although the exchange
of structure-less messages between producer and
consumer is flexible, we’ve seen teams facing issues
with incompatible unprocessed messages in the queue
during deployments. We’ve used Avro in a number
of projects and would recommend using it over just
sending unstructured messages.

Hangfire is both easy to use and flexible, and
it embraces a functional style. Particularly
interesting is its ability to save a task’s state so
it can resume when an application restarts
after a crash or shutdown.
— Hangfire

One common problem in application development
is how to schedule tasks that run outside the main
process periodically or when certain conditions are met.
The problem gets more complicated when unexpected
events, such as application shutdowns, occur. The
HANGFIRE framework, as our teams discovered, can do
this and much more in the .NET environment. Hangfire
is both easy to use and flexible, and it embraces a
functional style. Particularly interesting is its ability to
save a task’s state so it can resume when an application
restarts after a crash or shutdown.

NIGHTWATCH is a framework that allows automated
acceptance tests for browser-based apps to be created
in JavaScript and run in Node.js. Nightwatch allows
tests to be defined using a fluent API which can then
be executed against a Selenium/WebDriver server. In
the case of single page apps or other JavaScript-heavy
pages, this allows the automated tests to be created
and run within the same language and environment as
the bulk of the code.

In the ever-changing world of front-end JavaScript
frameworks, one of the emerging favorites appears
to be VUE.JS. Vue.js is a lightweight alternative to
AngularJS. It is designed to be a very flexible—and a
less opinionated—library that offers a set of tools for
building interactive web interfaces around concepts
such as modularity, components and reactive data flow.
It has a low learning curve, which makes it interesting
for less experienced developers and beginners. Note,

though, that Vue.js is not a full-blown framework; it is
focused on the view layer only and therefore is easy to
integrate with other libraries or existing projects.

In the previous Radar, we moved AngularJS into the
Hold ring (where it remains in this edition). When it
comes to ANGULAR 2, we’re seeing mixed messages.
Over the past year some teams at ThoughtWorks
have used Angular 2 successfully and consider it a
solid choice. However, Angular 2 is a rewrite, not an
evolution, of AngularJS, and switching from AngularJS
to Angular 2 is not much different than switching
from AngularJS to another framework. Given the, in
our experience, superior contenders such as React.js,
Ember.js and Vue.js, we’re still hesitant to give Angular
2 a strong recommendation. We do want to highlight,
though, that it is not a bad choice, especially if you
bought into TypeScript.

CAFFE is an open source library for deep learning
created by the Berkeley Vision and Learning Center.
It mostly focusses on convolutional networks for
computer vision applications. Caffe is a solid and
popular choice for computer vision-related tasks and
you can download many successful models made by
Caffe users from the Caffe Model Zoo for out-of-the-
box use. Like Keras, Caffe is a Python-based API. In
Keras, however, models and components are objects
created directly in Python code, whereas Caffe models
are described by Protobuf configuration files. Either
approach has its pros and cons, and converting
between the two is also possible.

DEEPLEARNING.SCALA is an open source deep-
learning toolkit in Scala created by our colleagues
at ThoughtWorks. We’re excited about this project
because it uses differentiable functional programming
to create and compose neural networks; a developer
simply writes code in Scala with static typing.
DeepLearning.scala currently supports basic types such
as float, double, GPU-accelerated N-dimensional arrays
as well as algebraic data types. We’re looking forward to
future releases of the toolkit which are said to support
higher order functions and distributed training on
Spark.

INSTANA is yet another entrant into the crowded
application performance management space. The
fact that it’s built from the ground up for cloud native
architectures differentiates Instana from many of its

http://hangfire.io/
http://nightwatchjs.org/
https://thoughtworks.com/radar/platforms/node-js
https://vuejs.org/
https://thoughtworks.com/radar/languages-and-frameworks/angularjs
https://thoughtworks.com/radar/languages-and-frameworks/angularjs
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
http://caffe.berkeleyvision.org/
http://bair.berkeley.edu/
https://thoughtworks.com/radar/languages-and-frameworks/keras
https://developers.google.com/protocol-buffers/
https://github.com/ThoughtWorksInc/DeepLearning.scala
https://www.thoughtworks.com/radar/platforms/apache-spark
http://www.instana.com/

© ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR | 20

competitors. Features include dynamic discovery,
distributed tracing and service health plus the ability
to “time shift” your view of your infrastructure to
the moment an incident occurred. It remains to be
seen whether this product can gain traction over the
combination of open source projects—such as Consul,
Prometheus and the implementations of OpenTracing—
that do the same thing; however it’s worth taking a look
if you need an out-of-the-box solution.

KERAS is a high-level interface in Python for building
neural networks. Created by a Google engineer, Keras
is open source and runs on top of either TensorFlow or
Theano. It provides an amazingly simple interface for
creating powerful deep-learning algorithms to train on
CPUs or GPUs. Keras is well designed with modularity,
simplicity, and extensibility in mind. Unlike a library
such as Caffe, Keras supports more general network
architectures such as recurrent nets, making it overall
more useful for text analysis, NLP and general machine
learning. If computer vision, or any other specialized
branch of machine learning, is your primary concern,
Caffe may be a more appropriate choice. However, if
you’re looking to learn a simple yet powerful framework,
Keras should be your first choice.

KNET.JL is the Koç University deep-learning framework
implemented in Julia by Deniz Yuret and collaborators.
Unlike gradient-generating compilers such as Theano
and TensorFlow which force users into a restricted
mini-language, Knet allows the definition and training
of machine-learning models using the full power
and expressiveness of Julia. Knet uses dynamic
computational graphs generated at runtime for the
automatic differentiation of almost any Julia code. We
really like the support of GPU operations through the
KnetArray type, and in case you don’t have access to a
GPU machine, the team behind Knet also maintains a
preconfigured Amazon Machine Image (AMI) so you can
evaluate it in the cloud.

The KOTLIN programming language is on many of our
developers’ bucket lists to assess this year, and some
have already used it successfully in production. It is an
open source JVM language from JetBrains. Our Swift
mobile developers like it as it is syntactically closer to
Swift and equally concise. Our Java developers have

enjoyed its seamless interoperability with the Java
language and tools and found it easier to learn than
Scala. Kotlin supports functional programming concepts
but with less features than Scala. Developers on our
teams who like static typing with the compiler catching
null pointer defects found themselves writing fewer
boilerplate tests.

Teams building systems composed
of microservices need to think about
coordination techniques such as service
discovery, load balancing, circuit breaking and
health checking.
— Spring Cloud

POSTCSS is a Node.js-based JavaScript framework
for operating on an abstract syntax tree-based
representation of CSS documents with a rich
ecosystem of plugins. Often incorrectly thought of as a
preprocessor (such as SaaS or Less), we find that the
real power of PostCSS comes from the number of things
that can be done with the rich set of plugins which
includes linting (the stylelint plugin), cross-compilation
(the sugarss plugin), name-mangling to avoid selector
collision (the modules plugin), boilerplate CSS code
generation (the autoprefixer plugin), minification and
many others. The different maturity levels of the plugins
notwithstanding, PostCSS itself remains a simple and
powerful framework for treating CSS like a full-fledged
language for front-end development.

Teams building systems composed of microservices
need to think about coordination techniques such as
service discovery, load balancing, circuit breaking and
health checking. Many of these techniques require teams
to set up tooling, which is not always trivial. The SPRING
CLOUD project provides tools for developers so they can
use these coordination techniques in the familiar Spring
environment. These tools support Consul, ZooKeeper
and the Netflix OSS full stack, all tools that we like. Simply
put, it makes it easy to do the right thing with these tool
sets. Although our usual concerns with Spring still stand,
namely that it hides too much of the complexity, you
should consider Spring Cloud if you are in the ecosystem
and need to solve these problems.

https://thoughtworks.com/radar/tools/consul
https://thoughtworks.com/radar/tools/prometheus
https://thoughtworks.com/radar/platforms/opentracing
https://keras.io/
https://thoughtworks.com/radar/platforms/tensorflow
http://github.com/Theano/Theano
https://thoughtworks.com/radar/languages-and-frameworks/caffe
http://knet.rtfd.org/
http://www.ku.edu.tr/en
http://julia.rtfd.org/
http://www.denizyuret.com/
https://github.com/Theano/Theano
https://thoughtworks.com/radar/platforms/tensorflow
http://knet.readthedocs.io/en/latest/install.html#using-amazon-aws
https://kotlinlang.org/
https://thoughtworks.com/radar/languages-and-frameworks/swift
http://projects.spring.io/spring-cloud/
https://github.com/postcss/postcss
https://thoughtworks.com/radar/platforms/node-js
https://github.com/stylelint/stylelint
https://github.com/postcss/sugarss
https://github.com/css-modules/postcss-modules
https://github.com/postcss/autoprefixer
http://cssnano.co/
http://projects.spring.io/spring-cloud/
http://projects.spring.io/spring-cloud/
https://thoughtworks.com/radar/tools/consul
https://zookeeper.apache.org/
https://thoughtworks.com/radar/platforms/netflix-oss-full-stack

Be the first to know when the Technology Radar
launches, and keep up to date with exclusive

webinars and content.

SUBSCRIBE NOW

thght.works/Sub-EN

https://info.thoughtworks.com/technology-radar-subscription?utm_campaign=tech-radar&utm_medium=download&utm_source=pdf&utm_content=subscribe

ThoughtWorks is a technology consultancy and community of passionate,
purpose-led individuals. We help our clients put technology at the core of their

business, and together create the software that matters most to them. Dedicated
to positive social change; our mission is to better humanity through software, and

we partner with many organisations striving in the same direction.

Founded over 20 years ago, ThoughtWorks has grown to a company of over 4000
people, including a products division which makes pioneering tools for software
teams. ThoughtWorks has 40 offices across 14 countries: Australia, Brazil, Chile,
China, Ecuador, Germany, India, Italy, Singapore, South Africa, Spain, Turkey, the

United Kingdom and the United States.

thoughtworks.com

https://www.thoughtworks.com/
https://www.thoughtworks.com/

