
TECHNOLOGY 
RADAR APRIL ‘16

Our thoughts on the 
technology and trends that 

are shaping the future

thoughtworks.com/radar

https://thoughtworks.com/radar


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  1

WHAT’S NEW?
Here are the themes highlighted in this edition:

OPEN SOURCE AS A VIRTUOUS BY-PRODUCT
Some of the most influential software appearing on our radar comes from companies whose first mandate isn’t 
to create software tools. Several of our radar entries come from Facebook, not considered a traditional software 
development toolmaker. Unlike in the past, today many companies open source their important software assets—to 
attract new recruits and credentialize themselves. This creates a virtuous feedback loop: Innovative open source attracts 
good developers who are in turn more likely to innovate. As a side effect, these companies’ frameworks and libraries are 
some of the most influential in the industry. This represents a big shift in the software development ecosystem and is 
further proof of the efficacy of open source software … in the right context (our advice about Web Scale Envy still stands).

PARSING THE PAAS PUZZLE
Many large organizations see the Cloud and Platform as a Service (PaaS) as an obvious way to standardize 
infrastructure, ease deployment and operations, and make developers more productive. But it’s still early days, the 
definition of PaaS remains nebulous, and many PaaS approaches are incomplete or suffer from the immaturity of 
supporting frameworks and tools. Some PaaS solutions make it harder to do things more easily done with plain 
Infrastructure as a Service (IaaS), such as using a custom Service Locator or complex network topology, and the jury 
is still out on whether a “Containers as a Service” approach will provide similar value with more flexibility. We see 
many companies implementing an off-the-shelf PaaS or gradually building their own, with varying degrees of success. 
We suspect that any PaaS built today will not be an end state but rather part of an evolutionary path. Enterprise 
migration to Cloud and PaaS, while bringing many benefits, has difficulties and challenges, particularly around overall 
pipeline design and tooling. Consumers of these technologies should seek the inflection point that indicates “ready 
for prime time” for their context and should avoid coupling too tightly to the implementation details of their PaaS.

DOCKER, DOCKER, DOCKER!
Containerization, and Docker in particular, has proven hugely beneficial as an application-management technique, 
rationalizing deployment between environments and simplifying the “it works here but not there” class of problems. 
We see a significant amount of energy focused on using Docker—and, particularly, the ecosystem surrounding it—
beyond dev/test and all the way into production. Docker containers are used as the “unit of scaling” for many PaaS 
and “data center OS” platforms, giving Docker even more momentum. As it matures as both a development and 
production environment, people are paying more attention to containerization, its side effects and its implications.

CONTRIBUTORS
The Technology Radar is prepared by the ThoughtWorks Technology Advisory Board, comprised of:

Rebecca Parsons (CTO)

Martin Fowler(Chief Scientist)

Anne J Simmons

Badri Janakiraman

Brain Leke

Dave Elliman

Erik Doernenburg

Evan Bottcher

Fausto de la Torre

Hao Xu

Ian Cartwright

James Lewis

Jonny LeRoy

Mike Mason

Neal Ford

Rachel Laycock

Sam Newman

Scott Shaw

Srihari Srinivasan

Thiyagu Palanisamy

OVER-REACTIVE?
Reactive programming—where components react to changes in data that are propagated to them rather than use 
imperative wiring—has become extremely popular, with reactive extensions available in almost all programming 
languages. User interfaces, in particular, are commonly written in a reactive style, and many ecosystems are settling 
on this paradigm. While we like the pattern, overuse of event-based systems complicates program logic, making it 
difficult to understand; developers should use this style of programming judiciously. It is certainly popular: We added 
a significant number of reactive frameworks and supporting tools on this Radar.

https://thoughtworks.com/radar/techniques/high-performance-envy-web-scale-envy
https://thoughtworks.com/radar/platforms/docker
http://www.thoughtworks.com/profiles/rebecca-parsons
http://www.thoughtworks.com/profiles/martin-fowler
http://www.thoughtworks.com/profiles/anne-j-simmons
http://www.thoughtworks.com/profiles/badrinath-janakiraman
http://www.thoughtworks.com/profiles/brain-leke
http://www.thoughtworks.com/profiles/dave-elliman
http://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/fausto-de-la-torre
http://www.thoughtworks.com/profiles/xu-hao
http://www.thoughtworks.com/profiles/ian-cartwright
http://www.thoughtworks.com/profiles/james-lewis
http://www.thoughtworks.com/profiles/jonny-leroy
http://www.thoughtworks.com/profiles/mike-mason
http://www.thoughtworks.com/profiles/neal-ford
http://www.thoughtworks.com/profiles/rachel-laycock
http://www.thoughtworks.com/profiles/sam-newman
http://www.thoughtworks.com/profiles/scott-shaw
http://www.thoughtworks.com/profiles/srihari-srinivasan
http://www.thoughtworks.com/profiles/thiyagu-palanisamy


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  2

ABOUT THE TECHNOLOGY RADAR
ThoughtWorkers are passionate about technology. We build it, research it, test it, open source it, write about it, 
and constantly aim to improve it – for everyone. Our mission is to champion software excellence and revolutionize 
IT. We create and share the ThoughtWorks Technology Radar in support of that mission. The ThoughtWorks 
Technology Advisory Board, a group of senior technology leaders in ThoughtWorks, creates the radar. They meet 
regularly to discuss the global technology strategy for ThoughtWorks and the technology trends that significantly 
impact our industry.

The radar captures the output of the Technology Advisory Board’s discussions in a format that provides value to a 
wide range of stakeholders, from CIOs to developers. The content is intended as a concise summary. We encourage 
you to explore these technologies for more detail. The radar is graphical in nature, grouping items into techniques, 
tools, platforms, and languages & frameworks. When radar items could appear in multiple quadrants, we chose the 
one that seemed most appropriate. We further group these items in four rings to reflect our current position on 
them. The rings are:

Items that are new or have had significant changes since the last radar are represented as triangles, while items that 
have not moved are represented as circles. We are interested in far more items than we can reasonably fit into a 
document this size, so we fade many items from the last radar to make room for the new items. Fading an item does 
not mean that we no longer care about it.

For more background on the radar, see thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85We feel strongly that the industry should be 

adopting these items. We use them when 
appropriate on our projects.

Worth pursuing. It is important to 
understand how to build up this 
capability. Enterprises should try 
this technology on a project that can 
handle the risk.

Worth exploring 
with the goal of 
understanding how 
it will affect your 
enterprise.

Proceed with 
caution.

https://thoughtworks.com/radar/faq


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  3

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85

THE RADAR
TECHNIQUES
ADOPT
1.  Decoupling deployment from release
2.  Products over projects
3.  Threat Modeling

TRIAL
4.  BFF - Backend for frontends
5.  Bug bounties
6.  Data Lake
7.  Event Storming
8.  Flux
9.  Idempotency filter
10. iFrames for sandboxing
11. NPM for all the things
12. Phoenix Environments
13. QA in production
14. Reactive architectures

ASSESS
15. Content Security Policies
16. Hosted IDE’s
17. Hosting PII data in the EU
18. Monitoring of invariants
19. OWASP ASVS
20. Serverless architecture
21. Unikernels
22. VR beyond gaming

HOLD
23. A single CI instance for all teams
24. Big Data envy
25. Gitflow
26. High performance envy/web scale envy
27. SAFe™
 

PLATFORMS
ADOPT
28. Docker
29. TOTP Two-Factor Authentication 

TRIAL
30. Apache Mesos
31. AWS Lambda
32. H2O
33. HSTS
34. Kubernetes
35. Linux security modules
36. Pivotal Cloud Foundry
37. Rancher

ASSESS
38. Amazon API Gateway
39. AWS ECS
40. Bluetooth Mesh
41. Ceph
42. Deflect
43. ESP8266
44. MemSQL
45. Mesosphere DCOS
46. Nomad
47. Presto
48. Realm
49. Sandstorm
50. TensorFlow

HOLD
51. Application Servers
52. Over-ambitious API Gateways
53. Superficial private cloud

New or moved
No change

new

new

new
new

new
new

new

new

new

new

new

new
new
new

new

new

new

new



© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  4

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85

THE RADAR
TOOLS
ADOPT
54. Consul

TRIAL
55. Apache Kafka
56. Browsersync
57. Carthage
58. Gauge
59. GitUp
60. Let’s Encrypt
61. Load Impact
62. OWASP Dependency-Check
63. Serverspec
64. SysDig
65. Webpack
66. Zipkin

ASSESS
67. Apache Flink
68. Concourse CI
69. Gitrob
70. Grasp
71. HashiCorp Vault
72. ievms
73. Jepsen
74. LambdaCD
75. Pinpoint
76. Pitest
77. Prometheus
78. RAML
79. Repsheet
80. Sleepy Puppy

HOLD
81. Jenkins as a deployment pipeline
 

LANGUAGES & FRAMEWORKS
ADOPT
82. ES6
83. React.js
84. Spring Boot
85. Swift

TRIAL
86. Butterknife
87. Dagger
88. Dapper
89. Ember.js
90. Enlive
91. Fetch
92. React Native
93. Redux
94. Robolectric
95. SignalR

ASSESS
96. Alamofire
97. AngularJS
98. Aurelia
99. Cylon.js
100. Elixir
101. Elm
102. GraphQL
103. Immutable.js
104. OkHttp
105. Recharts

HOLD
106. JSPatch

New or moved
No change

new

new
new

new

new

new

new
new

new

new

new

new

new

new

new
new

new

new

new

new

new

new

new

new

new

new



© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  5

With the number of high-profile security breaches in the 
past months, software development teams no longer 
need convincing that they must place an emphasis on 
writing secure software and dealing with their users’ 
data in a responsible way. The teams face a steep 
learning curve, though, and the vast number of potential 
threats—ranging from organized crime and government 
spying to teenagers who attack systems “for the lulz”—
can be overwhelming. Threat Modeling provides a 
set of techniques that help you identify and classify 
potential threats early in the development process. It is 
important to understand that it is only part of a strategy 
to stay ahead of threats. When used in conjunction 
with techniques such as establishing cross-functional 
security requirements to address common risks in the 
technologies a project uses and using automated security 
scanners, threat modeling can be a powerful asset.

The use of bug bounties continues to grow in 
popularity for many organizations, including enterprises 
and notable government bodies. A bug-bounty program 

encourages participants to identify potentially 
damaging vulnerabilities in return for reward or 
recognition. Companies like HackerOne and Bugcrowd 
offer services to help organizations manage this 
process more easily, and we’re seeing these services 
gather adoption.

A Data Lake is an immutable data store of largely 
unprocessed “raw” data, acting as a source for data 
analytics. While the technique can clearly be misused, 
we have used it successfully at clients, hence motivating 
its move to trial. We continue to recommend other 
approaches for operational collaborations, limiting the 
use of the data lake to reporting, analytics and feeding 
data into data marts.

We see continued adoption and success of reactive 
architectures, with reactive language extensions and 
reactive frameworks being very popular (we added 
several such blips in this edition of the Radar). User 
interfaces, in particular, benefit greatly from a reactive 
style of programming. Our caveats last time still hold 
true: Architectures based on asynchronous message 
passing introduce complexity and make the overall 
system harder to understand—it’s no longer possible to 
simply read the program code and understand what the 
system does. We recommend assessing the performance 
and scalability needs of your system before committing 
to this architectural style.

We are finding Content Security Policies to be a 
helpful addition to our security toolkit when dealing with 
websites that pull assets from mixed contexts. The policy 
defines a set of rules about where assets can come from 
(and whether to allow inline script tags). The browser 
then refuses to load or execute JavaScript, CSS or images 
that violate those rules. When used in conjunction with 
good practices, such as output encoding, it provides 
good mitigation for XSS attacks. Interestingly, the 
optional endpoint for posting JSON reports of violations 
is how Twitter discovered that ISPs were injecting HTML 
or JavaScript into their pages. HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85

TECHNIQUES

ADOPT
1.   Decoupling deployment from release
2.   Products over projects
3.   Threat Modeling

TRIAL
4.   BFF - Backend for frontends
5.   Bug bounties
6.   Data Lake
7.   Event Storming
8.   Flux
9.   Idempotency filter
10.   iFrames for sandboxing
11.   NPM for all the things
12.   Phoenix Environments
13.   QA in production
14.   Reactive architectures

ASSESS
15.   Content Security Policies
16.   Hosted IDE’s
17.   Hosting PII data in the EU
18.   Monitoring of invariants
19.   OWASP ASVS
20.   Serverless architecture
21.   Unikernels
22.   VR beyond gaming

HOLD
23.   A single CI instance for all teams
24.   Big Data envy
25.   Gitflow
26.   High performance envy/web scale envy
27.   SAFe™

https://www.owasp.org/index.php/Category:Threat_Modeling
https://hackerone.com/
https://bugcrowd.com/
http://martinfowler.com/bliki/DataLake.html
https://en.wikipedia.org/wiki/Content_Security_Policy


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  6

In a number of countries around the world, we see 
government agencies seeking broad access to private, 
personally identifiable information (PII). In the EU, 
the highest court has invalidated the Safe Harbor 
framework, and Privacy Shield, its successor, is expected 
to be challenged too. At the same time, the use of 
cloud computing is increasing, and all the major cloud 
providers—Amazon, Google and Microsoft—offer multiple 
data centers and regions within the European Union. 
Therefore, we recommend that companies, especially 
those with a global user base, assess the feasibility of a 
safe haven for their users’ data, protected by the most 
progressive privacy laws, by Hosting PII in the EU.

As more development teams incorporate security earlier 
in the development life cycle, figuring out requirements 
to limit security risks can seem like a daunting task. Few 
people have the extensive technical knowledge needed 
to identify all the risks that an application might face, 
and teams might struggle just trying to decide where to 
begin. Relying on frameworks such as OWASP’s ASVS 
(Application Security Verification Standard) can help 
make this easier. Although somewhat lengthy, it contains 
a thorough list of requirements categorized by functions 
such as authentication, access control, and error 
handling and logging, which can be reviewed as needed. 
It is also helpful as a resource for testers when it comes 
time to verify software.

Serverless architecture replaces long-running 
virtual machines with ephemeral compute power 
that comes into existence on request and disappears 
immediately after use. Examples include Firebase and 
AWS Lambda. Use of this architecture can mitigate 
some security concerns such as security patching and 
SSH access control, and can make much more efficient 
use of compute resources. These systems cost very 
little to operate and can have inbuilt scaling features 
(this is especially true for AWS Lambda). An example 
architecture could be a JavaScript app with static assets 
served by a CDN or S3 coupled with AJAX calls served 
by the API Gateway and Lambda. While serverless 
architectures have significant benefits, there are 
drawbacks too: Deploying, managing and sharing code 
across services is more complex, and local or offline 
testing is more difficult if not impossible.

TECHNIQUES continued

With the continued rise to domination of the container 
model led by Docker adoption, we think it’s worth calling 
attention to the continued rapid development in the 
Unikernel space. Unikernels are single-purpose library 
operating systems that can be compiled down from high-
level languages to run directly on the hypervisors used by 
commodity cloud platforms. They promise a number of 
advantages over containers, not least their superfast startup 
time and very small attack surface area. Many are still at 
the research-project phase—Drawbridge from Microsoft 
Research, MirageOS and HaLVM amongst others—but we 
think the ideas are very interesting and combine nicely with 
the technique of serverless architecture.

The idea of virtual reality has been around for more than 
50 years, and with successive improvements of computing 
technology many ideas have been hyped and explored. 
We believe that we’re reaching a tipping point now. 
Modern graphics cards provide sufficient compute power 
to render detailed, realistic scenes in high resolutions, 
and at the same time at least two consumer-oriented 
VR headsets (the HTC Vive and Facebook’s Oculus Rift) 
are coming to market. These headsets are affordable, 
they have high-resolution displays, and they eliminate 
perceivable motion-tracking lag, which was causing issues 
such as headaches and nausea before. The headsets are 
mainly targeted at enthusiast video gaming, but we are 
convinced that they will open many possibilities for VR 
beyond gaming, particularly as the low-fi approaches, 
such as Google Cardboard, are driving greater awareness.

There might be the impression that it’s easier to manage 
a single CI (Continuous Integration) instance for 
all teams because it gives them a single configuration 
and monitoring point. But a bloated instance that is 
shared by every team in an organization can cause a 
lot of damage. We have found that problems like build 
timeouts, configuration conflicts and gigantic build 
queues appear more frequently. Having this single point 
of failure can interrupt the work of many teams. Carefully 
consider the trade-off between these pitfalls and having 
a single point of configuration. In organizations with 
multiple teams, we recommend having CI instances 
distributed by teams, with enterprise decisions based not 
on the single CI installation but on defining guidelines 
about the instances’ selection and configuration.

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.firebase.com/
https://thoughtworks.com/radar/platforms/aws-lambda
http://research.microsoft.com/en-us/projects/drawbridge/
https://mirage.io/
http://galois.com/project/halvm/
https://thoughtworks.com/radar/techniques/serverless-architecture
http://www.htcvive.com/uk/
https://www.oculus.com/en-us/
https://www.google.co.uk/get/cardboard/get-cardboard/


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  7

While we’ve long understood the value of Big Data 
to better understand how people interact with 
us, we’ve noticed an alarming trend of Big Data 
envy: organizations using complex tools to handle 
“not-really-that-big” Data. Distributed map-reduce 
algorithms are a handy technique for large data sets, 
but many data sets we see could easily fit in a single-

node relational or graph database. Even if you do have 
more data than that, usually the best thing to do is 
to first pick out the data you need, which can often 
then be processed on such a single node. So we urge 
that before you spin up your clusters, take a realistic 
assessment of what you need to process, and if it 
fits—maybe in RAM—use the simple option.

TECHNIQUES continued

http://yourdatafitsinram.com/


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  8

We remain excited about Docker as it evolves from a 
tool to a complex platform of technologies. Development 
teams love Docker, as the Docker image format makes 
it easier to achieve parity between development and 
production, making for reliable deployments. It is a 
natural fit in a microservices-style application as a 
packaging mechanism for self-contained services. On the 
operational front, Docker support in monitoring tools 
(Sensu, Prometheus, cAdvisor, etc.), orchestration tools 
(Kubernetes, Marathon, etc.) and deployment-automation 
tools reflect the growing maturity of the platform and its 
readiness for production use. A word of caution, though: 
There is a prevalent view of Docker and Linux containers 
in general as being “lightweight virtualization,” but we 

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85

PLATFORMS
would not recommend using Docker as a secure process-
isolation mechanism, though we are paying attention 
to the introduction of user namespaces and seccomp 
profiles in version 1.10 in this regard.

Our teams continue to enjoy using AWS Lambda and 
are beginning to use it to experiment with Serverless 
architectures, combining Lambda with the API Gateway 
to produce highly scalable systems with invisible 
infrastructure. We have run into significant problems 
using Java for Lambda functions, with erratic latencies 
up to several seconds as the Lambda container is 
started. We recommend sticking with JavaScript or 
Python for the time being.

Kubernetes is Google’s answer to the problem of 
deploying containers into a cluster of machines, which 
is becoming an increasingly common scenario. It is 
not the solution used by Google internally but an 
open source project that originated at Google and has 
seen a fair number of external contributions. Since 
we mentioned Kubernetes on the previous Radar, 
our initial positive impressions have been confirmed, 
and we are seeing successful use of Kubernetes in 
production at our clients.

In earlier versions of the Radar, we have highlighted the 
value of Linux security modules, talking about how 
they enable people to think about server hardening as a 
part of their development workflow. More recently, with 
LXC and Docker containers now shipping with default 
AppArmor profiles on certain Linux distributions, it has 
forced the hand of many teams to understand how these 
tools work. In the event that teams use container images 
to run any process that they did not themselves create, 
these tools help them assess questions about who has 
access to what resources on the shared host and the 
capabilities that these contained services have, and be 
conservative in managing levels of access.

ADOPT
28.   Docker
29.   TOTP Two-Factor Authentication

TRIAL
30.   Apache Mesos
31.   AWS Lambda
32.   H2O
33.   HSTS
34.   Kubernetes
35.   Linux security modules
36.   Pivotal Cloud Foundry
37.   Rancher

ASSESS
38.   Amazon API Gateway
39.   AWS ECS
40.   Bluetooth Mesh
41.   Ceph
42.   Deflect
43.   ESP8266
44.   MemSQL
45.   Mesosphere DCOS
46.   Nomad
47.   Presto
48.   Realm
49.   Sandstorm
50.   TensorFlow

HOLD
51.   Application Servers
52.   Over-ambitious API Gateways
53.   Superficial private cloud

https://www.docker.com/
https://thoughtworks.com/radar/tools/sensu
https://thoughtworks.com/radar/tools/prometheus
https://github.com/google/cadvisor
https://thoughtworks.com/radar/platforms/kubernetes
https://mesosphere.github.io/marathon/
https://aws.amazon.com/lambda/
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/techniques/serverless-architecture
https://aws.amazon.com/api-gateway/
http://kubernetes.io/
https://linuxcontainers.org/
https://thoughtworks.com/radar/platforms/docker
https://wiki.ubuntu.com/AppArmor


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  9

PLATFORMS continued

The PaaS space has seen a lot of movement since we 
last mentioned Cloud Foundry in 2012. While there 
are various distributions of the open source core, we 
have been impressed by the offering and ecosystem 
assembled as Pivotal Cloud Foundry. While we expect 
continued convergence between the unstructured 
approach (Docker, Mesos, Kubernetes, etc.) and the 
more structured and opinionated buildpack style offered 
by Cloud Foundry and others, we see real benefit for 
organizations that are willing to accept the constraints 
and rate of evolution to adopt a PaaS. Of particular 
interest is the speed of development that comes from 
the simplification and standardization of the interaction 
between development teams and platform operations.

The emerging Containers as a Service (CaaS) space is 
seeing a lot of movement and provides a useful option 
between basic IaaS (Infrastructure as a Service) and more 
opinionated PaaS (Platform as a Service). While Rancher 
creates less noise than some other players, we have 
enjoyed the simplicity that it brings to running Docker 
containers in production. It can run stand-alone as a full 
solution or in conjunction with tools like Kubernetes.

Amazon API Gateway is Amazon’s offering enabling 
developers to expose API services to Internet clients, 
offering the usual API gateway features like traffic 
management, monitoring, authentication and 
authorization. Our teams have been using this service to 
front other AWS capabilities like AWS Lambda as part of 
serverless architectures. We continue to monitor for the 
challenges presented by over-ambitious API gateways, 
but at this stage Amazon’s offering appears to be 
lightweight enough to avoid those problems.

While many deployments of smart devices rely on 
Wi-Fi connectivity, we have been seeing success with 
Bluetooth Mesh networks that don’t necessitate a hub 
or gateway. With better energy usage than Wi-Fi and 
better smartphone adoption than ZigBee, Bluetooth LE 
deployed as a self-healing mesh provides interesting new 
approaches for connecting local device-area networks. 
We are still waiting for the formal approach to emerge 
from the Bluetooth SIG but have already had successful 
deployments. We particularly like the lack of infrastructure 
required to stand up a decentralized network but still 
retain the option to “progressively enhance” the system 
with the addition of a gateway and cloud services.

Deflect is an open source service protecting NGOs, 
activist and independent media companies from DDoS 
attacks. Similar to a commercial CDN, it uses distributed 
reverse-proxy caching and also hides your server IP 
addresses and blocks public access to admin URLs. 
Particular effort is put in to combat the botnets typically 
used for extrajudicial censoring of independent voices.

Our growing ranks of hardware hackers have been 
excited by the ESP8266 Wi-Fi microcontroller. 
Rather than a specific technology innovation, it is 
the combination of low price point and small form 
factor that has sparked an inflection point in people’s 
thinking about what is now feasible to achieve with 
custom hardware devices. Its main characteristics are: 
Wi-Fi capabilities (it can act as station, access point or 
a combination of both), low power, open hardware, 
Arduino SDK programmability, Lua programmability, 
huge community support and low cost compared with 
other IoT modules.

As Moore’s Law predicts, we continue to increase the 
capacity of computer systems and reduce their cost, and 
so new processing techniques become possible that only 
a few years ago would have seemed out of reach. One 
of these techniques is the in-memory database: Instead 
of using slow disks or relatively slow SSDs to store data, 
we can keep it in memory for high performance. One 
such in-memory database, MemSQL, is making waves 
because it is horizontally scalable across a cluster and 
provides a familiar SQL-based query language. MemSQL 
also connects to Spark for analytics against real-time 
data, rather than stale data in a warehouse.

HashiCorp continues to turn out interesting software. 
The latest to catch our attention is Nomad, which is 
competing in the ever-more-populated scheduler arena. 
Major selling points include not just being limited to 
containerized workloads, and operating in multi–data 
center / multiregion deployments.

Realm is a database designed for use on mobile 
devices, with its own persistence engine to achieve high 
performance. Realm is marketed as a replacement for 
SQLite and Core Data, and our teams have enjoyed using 
it. Note that migrations are not quite as straightforward 
as the Realm documentation would have you believe. Still, 
Realm has us excited, and we suggest you take a look.

https://thoughtworks.com/radar/platforms/cloud-foundry
http://pivotal.io/platform
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/platforms/apache-mesos
https://thoughtworks.com/radar/platforms/kubernetes
http://rancher.com/
https://thoughtworks.com/radar/platforms/docker
https://thoughtworks.com/radar/platforms/kubernetes
https://aws.amazon.com/api-gateway/
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/platforms/over-ambitious-api-gateways
https://deflect.ca/
http://esp8266.net/
http://www.memsql.com/
https://www.nomadproject.io/
https://realm.io/


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  10

For people who want the benefit of cloud-based 
collaboration tools but don’t want to inadvertently 
“become the product” of a major cloud provider, 
Sandstorm provides an interesting open source 
alternative with the potential for self-hosting. Of 
particular interest is the isolation approach, whereby 
containerization is applied per document rather than 
per application, and syscall whitelisting is added to 
further secure the sandbox.

Google’s TensorFlow is an open source machine-
learning platform that can be used for everything 
from research through to production and will run on 

hardware from a mobile CPU all the way to a large GPU 
compute cluster. It’s an important platform because 
it makes implementing deep-learning algorithms 
much more accessible and convenient. Despite the 
hype, though, TensorFlow isn’t really anything new 
algorithmically: All of these techniques have been 
available in the public domain via academia for some 
time. It’s also important to realize that most businesses 
are not yet doing even basic predictive analytics and that 
jumping to deep learning likely won’t help make sense of 
most data sets. For those who do have the right problem 
and data set, however, TensorFlow is a useful toolkit.

PLATFORMS continued

https://sandstorm.io/
http://docs.sandstorm.io/en/latest/using/security-practices/#server-sandboxing
https://www.tensorflow.org/


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  11

We have moved Consul, the service-discovery tool 
supporting both DNS- and HTTP-based discovery 
mechanisms, into Adopt. It goes beyond other discovery 
tools by providing customizable health checks for 
registered services, ensuring that unhealthy instances 
are marked accordingly. More tools have emerged to 
work with Consul to make it even more powerful. Consul 
Template enables configuration files to be populated with 
information from Consul, making things like client-side 
load balancing using mod_proxy much easier. In the world 
of Docker, registrator can automatically register Docker 
containers as they appear with Consul with extremely 
little effort, making it much easier to manage container-
based setups. You should still think long and hard about 
whether you need a tool like this or whether something 
simpler will do, but if you decide you need service 
discovery, you won’t go far wrong with Consul.

Many organizations are now looking closely at new data 
architectures that capture information as immutable 
sequences of events at scale. Apache Kafka continues 
to build momentum as an open source messaging 
framework that provides a solution for publishing ordered 
event feeds to large numbers of independent, lightweight 
consumers. Configuring Kafka is nontrivial, but our teams 
are reporting positive experiences with the framework.

Gauge is a lightweight cross-platform test-automation 
tool. Specifications are written in free-form Markdown 
so test cases can be written in the business language, 
as opposed to using the more common but restrictive 
“given-when-then” format. Language and IDE 
support are implemented as plugins to a single core 
implementation, allowing testers to use the same IDEs as 
the rest of the team, with powerful capabilities such as 
autocompletion and refactoring. This tool, open sourced 
by ThoughtWorks, also supports parallel execution out of 
the box for all supported platforms.

Let’s Encrypt first appeared on the Radar last edition, 
and since December 2015 this project has moved its 

TOOLS

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85

beta status from private to public, meaning users will no 
longer be required to have an invitation in order to try 
it. Let’s Encrypt grants access to a simpler mechanism 
to obtain and manage certificates for a larger set of 
users who are seeking a way to secure their websites. 
It also promotes a big step forward in terms of security 
and privacy. This trend has already begun within 
ThoughtWorks, and many of our projects now have 
certificates verified by Let’s Encrypt.

Load Impact is a SaaS load-testing tool that can 
generate highly realistic loads of up to 1.2 million 
concurrent users. Record and playback web 
interactions using a Chrome plugin simulate network 
connections for mobile or desktop users and generate 
load from up to 10 different locations around the 
world. While not the only on-demand load-testing tool 
we’ve used—we also like BlazeMeter—our teams were 
very enthusiastic about Load Impact.

ADOPT
54.   Consul

TRIAL
55.   Apache Kafka
56.   Browsersync
57.   Carthage
58.   Gauge
59.   GitUp
60.   Let’s Encrypt
61.   Load Impact
62.   OWASP Dependency-Check
63.   Serverspec
64.   SysDig
65.   Webpack
66.   Zipkin

ASSESS
67.   Apache Flink
68.   Concourse CI
69.   Gitrob
70.   Grasp
71.   HashiCorp Vault
72.   ievms
73.   Jepsen
74.   LambdaCD
75.   Pinpoint
76.   Pitest
77.   Prometheus
78.   RAML
79.   Repsheet
80.   Sleepy Puppy

HOLD
81.   Jenkins as a deployment pipeline

http://consul.io/
https://github.com/hashicorp/consul-template
https://github.com/hashicorp/consul-template
https://github.com/gliderlabs/registrator
http://kafka.apache.org/
http://getgauge.io/
https://letsencrypt.org/
https://loadimpact.com/
https://blazemeter.com/


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  12

TOOLS continued

In a world full of libraries and tools that simplify the 
life of many software developers, deficiencies in their 
security have become visible and have increased the 
vulnerability surface in the applications that use them. 
OWASP Dependency-Check automatically identifies 
potential security problems in the code, checking if 
there are any known publicly disclosed vulnerabilities, 
then using methods to constantly update the database 
of public vulnerabilities. Dependency-Check has some 
interfaces and plugins to automate this verification in 
Java and .NET (which we have used successfully) as well 
as Ruby, Node.js and Python.

In the past we have included automated Provisioning 
Testing as a recommended technique, and in this issue we 
highlight Serverspec as a popular tool for implementing 
those tests. Although this tool is not new, we are seeing 
its use become more common as more cross-functional 
delivery teams take on responsibility for infrastructure 
provisioning. Serverspec is built on the Ruby library RSpec 
and comes with a comprehensive set of helpers for 
asserting that server configuration is correct.

Webpack has solidified itself as our go-to JavaScript 
module bundler. With its ever-growing list of loaders, 
it provides a single dependency tree for all your static 
assets, allowing flexible manipulation of JavaScript, 
CSS, etc. and minimizing what needs to be sent to the 
browser and when. Of particular relevance is the smooth 
integration among AMD, CommonJS and ES6 modules and 
how it has enabled teams to work in ES6 and seamlessly 
transpile (using Babel) to earlier versions for browser 
compatibility. Many of our teams also value Browserify, 
which covers a similar space but is more focused on 
making Node.js modules available for client-side use.

Development on Zipkin has continued apace, and since 
the middle of 2015 it has moved to the openzipkin/
zipkin organization at GitHub. There are now bindings 
for Python, Go, Java, Ruby, Scala and C#; and there 
are Docker images available for those wanting to 
get started quickly. We still like this tool. There is an 
active and growing community around usage of it, and 
implementation is getting easier. If you need a way 
of measuring the end-to-end latency of many logical 
requests, Zipkin continues to be a strong choice.

Apache Flink is a new-generation platform for scalable 
distributed batch and stream processing. At its core is 
a streaming data-flow engine. It also supports tabular 
(SQL-like), graph-processing and machine-learning 

operations. Apache Flink stands out with feature-rich 
capabilities for stream processing: event time, rich 
streaming window operations, fault tolerance and 
exactly-once semantics. While it hasn’t reached version 
1.0, it has raised significant community interest due to 
innovations in stream processing, memory handling, 
state management and simplicity of configuration.

Attackers continue to use automated software to crawl 
public GitHub repositories to find AWS credentials and 
spin up EC2 instances to mine Bitcoins or for other 
nefarious purposes. Although adoption of tools like 
git-crypt and Blackbox to safely store secrets such as 
passwords and access tokens in code repositories is 
increasing, it is still all too common that secrets are 
stored unprotected. It is also not uncommon to see 
project secrets accidentally checked in to developers’ 
personal repositories. Gitrob can help minimize the 
damage of exposing secrets. It scans an organization’s 
GitHub repositories, flagging all files that might contain 
sensitive information that shouldn’t have been pushed to 
the repository. The current release of the tool has some 
limitations: It can only be used to scan public GitHub 
organizations and their members, it doesn’t inspect the 
contents of files, it doesn’t review the entire commit 
history, and it fully scans all repositories each time it is 
run. Despite these limitations, it can be a helpful reactive 
tool to help alert teams before it is too late. It should be 
considered a complementary approach to a proactive 
tool such as Talisman.

We had our collective minds blown by a little JavaScript 
command-line refactoring tool called Grasp. Providing a 
rich set of selectors and operating against the abstract 
syntax tree, it is leagues ahead of fiddling with sed and 
grep. A useful addition to the toolkit in our ongoing 
quest to treat JavaScript as a first-class language.

Having a way to securely manage secrets is increasingly 
becoming a huge project issue. The old idea of just 
having a file with secrets or environment variables is 
becoming hard to manage, especially in environments 
with multiple applications like microservices or 
microcontainer environments, where the applications 
need to access a multitude of secrets. HashiCorp Vault 
is a promising tool that tries to solve the problem by 
providing mechanisms for securely accessing secrets 
through an unified interface. It has some features that 
make life easier, such as encryption and automatically 
generating secrets for known tools, among others.

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://thoughtworks.com/radar/techniques/provisioning-testing
https://thoughtworks.com/radar/techniques/provisioning-testing
http://serverspec.org/
http://webpack.github.io/
https://github.com/webpack/docs/wiki/list-of-loaders
https://thoughtworks.com/radar/languages-and-frameworks/es6
http://babeljs.io/
http://browserify.org/
https://github.com/openzipkin/zipkin
http://flink.apache.org/
https://github.com/AGWA/git-crypt
https://thoughtworks.com/radar/tools/blackbox
https://github.com/michenriksen/gitrob
https://github.com/thoughtworks/talisman
http://www.graspjs.com/
https://thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language
https://thoughtworks.com/radar/techniques/microservices
https://github.com/hashicorp/vault


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  13

With the growth in usage of NoSQL data stores, and 
the growth in popularity of polyglot approaches to 
persistence, teams now have many choices when it 
comes to storing their data. While this has brought 
many advantages, product behavior with flaky networks 
can introduce subtle (and not so subtle) issues that 
are often not well understood, even in some cases 
by the product developers themselves. The Jepsen 
toolkit and accompanying blog have become the de-
facto reference for anyone looking to understand how 
different database and queuing technologies react 
under adverse conditions. Crucially, the approach 
to testing, which includes clients in the transactions, 
shines a spotlight on possible failure modes for many 
teams building microservices.

LambdaCD provides teams with a way to define 
Continuous Delivery pipelines in Clojure. This brings the 
benefits of Infrastructure as code to the configuration 
of CD servers: source-control management, unit testing, 
refactoring and code reuse. In the “pipelines as code” space, 
LambdaCD stands out for being lightweight, self-contained 
and fully programmable, allowing teams to work with their 
pipelines in the same way that they do with their code.

Teams using the Phoenix Server or Phoenix Environment 
techniques have found little in the way of support 
from Application Performance Management (APM) 
tools. Their licensing models, based on long-running, 
limited amounts of tin, and their difficulty in dealing 
with ephemeral hardware, have meant that they are 
often more trouble than they are worth. However, 
distributed systems need monitoring, and at some 
point many teams recognize the need for an APM 
tool. We think Pinpoint, an open source tool in this 
space, is worth investigating as an alternative to 
AppDynamics and Dynatrace. Pinpoint is written in Java, 
with plugins available for many servers, databases and 
frameworks. While we think you can go a long way using 
a combination of other lightweight open source tools—
Zipkin, for example—if you are in the market for an APM, 
Pinpoint is worth considering.

Pitest is a test coverage analysis tool for Java that 
uses a mutation-testing technique. Traditional test 
coverage analysis tends to measure the number of 

lines that are executed by your tests. It is therefore 
only able to identify code that is definitely not tested. 
Mutation testing, on the other hand, tries to test the 
quality of those lines that are executed by your test 
code and yet might contain general errors. Several 
problems can be spotted this way, helping the team to 
measure and grow a healthy test suite. Most of such 
tools tend to be slow and difficult to use, but Pitest 
has proven to have better performance, is easy to set 
up, and is actively supported.

Attacks on web properties using bots are becoming 
more sophisticated. Identifying these bad actors and 
their behaviors is the goal of the Repsheet project. 
It’s a plugin for either Apache or NGINX that records 
user activity, fingerprints actors using predefined 
and user-defined rules, and then allows action to be 
taken, including the ability to block offensive actors. It 
includes a utility that visualizes current actors; this puts 
the ability to manage bot-based threats in the hands 
of team members, increasing security awareness 
for teams. We like this since it’s a good example of 
a simple tool solving a very real but often invisible 
problem—bot-based attacks.

We know we’re in perilous territory here, since 
we build a competing tool, but we feel we have to 
address a persistent problem. Continuous Integration 
tools like CruiseControl and Jenkins are valuable for 
software development, but as your build process 
gets more complex it requires something beyond 
just Continuous Integration: It requires a deployment 
pipeline. We frequently see people trying to use 
Jenkins as a Deployment Pipeline with the aid of 
plugins, but our experience is that these quickly 
become a tangle. Jenkins 2.0 introduces “Pipeline 
as Code” but continues to model pipelines using 
plugins and fails to change the core Jenkins product 
to model pipelines directly. In our experience, tools 
that are built around a first-class representation of 
deployment pipelines are much more suitable, and 
this is what drove us to replace CruiseControl with 
GoCD. Today we see several products that embrace 
deployment pipelines, including ConcourseCI, 
LambdaCD, Spinnaker, Drone and GoCD.

TOOLS continued

https://github.com/aphyr/jepsen
https://aphyr.com/tags/Jepsen
http://www.lambda.cd/
https://thoughtworks.com/radar/tools/infrastructure-as-code
https://thoughtworks.com/radar/techniques/phoenix-environments
https://github.com/naver/pinpoint
https://thoughtworks.com/radar/tools/zipkin
http://pitest.org/
http://getrepsheet.com/
http://martinfowler.com/bliki/DeploymentPipeline.html
http://martinfowler.com/bliki/DeploymentPipeline.html
https://www.go.cd/
https://thoughtworks.com/radar/tools/concourse-ci
https://thoughtworks.com/radar/tools/lambdacd
http://spinnaker.io/
https://github.com/drone
https://thoughtworks.com/radar/tools/gocd


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  14

In the avalanche of front-end JavaScript frameworks, 
React.js stands out due to its design around a reactive 
data flow. Allowing only one-way data binding greatly 
simplifies the rendering logic and avoids many of the 
issues that commonly plague applications written with 
other frameworks. We’re seeing the benefits of React.js 
on a growing number of projects, large and small, while 
at the same time we continue to be concerned about 
the state and the future of other popular frameworks 
like AngularJS. This has led to React.js becoming our 
default choice for JavaScript frameworks.

A lot of work has gone into Spring Boot to reduce 
complexity and dependencies, which largely alleviates 
our previous reservations. If you live in a Spring 
ecosystem and are moving to microservices, Spring Boot 
is now the obvious choice. For those not in Springland, 
Dropwizard is also worthy of serious consideration.

Swift is now our default choice for development in the 
Apple ecosystem. With the release of Swift 2, the language 
approached a level of maturity that provides the stability 
and performance required for most projects. A good 
number of libraries that support iOS development—
SwiftyJSON, Quick, etc.—are now migrated over to Swift, 
which is where the rest of the applications should follow. 
Swift has now been open sourced, and we are seeing 
a community of developers dedicated to continuously 
improving development in iOS.

Butterknife is a field and method binding view-
injection library. It allows the injection of arbitrary 
objects, views and listeners, thereby ensuring cleaner 
code with reduced glue code for Android development. 
With Butterknife, multiple views can be grouped into 
a list or array with common actions applied to the 
views simultaneously, without heavy reliance on XML 
configurations. Our project teams have used this library 
and benefited from its simplicity and ease of use.

With the increased need for Android-based applications, 
Dagger offers a fully static, compile-time dependency-
injection framework. Dagger’s strictly generated 
implementation and nonreliance on reflection-based 

LANGUAGES & FRAMEWORKS

solutions addresses many of the performance and 
development issues, thereby making it suitable for 
Android development. With Dagger, there is full 
traceability with easy debugging because the entire call 
stack for provision and creation is made available.

Dapper is a minimal, lightweight ORM of sorts for .NET. 
Rather than trying to write the SQL queries for you, 
Dapper maps SQL queries to dynamic objects. Though it’s 
not brand new, Dapper has steadily gained acceptance 
from ThoughtWorks teams working in .NET. For the 
C# programmer, it removes some of the drudgery of 
mapping relational queries to objects while still allowing 
complete control over the SQL or stored procedures.

Ember.js has developed further support based on 
project experiences and is clearly a strong contender in 
the field of JavaScript application frameworks. Ember 
is praised for its developer experience, with far fewer 
surprises than other frameworks such as AngularJS. The 
Ember CLI build tooling, convention-over-configuration 
approach and ES6 support also gain positive feedback.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

42

38

49

37

31
28

3332
41

52

51

39

36

34

35

40

44

43

53

47

4645

65
54

75

76

64

60

55

67

63

58

62

61

68

7256
57

79

70
8171

73
74

87

86

92

94

89

88

83 84

90

104

82

95

93

91

69

66

59

78

48

1

2

7

8 9

10

11
12

13

4

3
515

6

26

25

27

16

18

14

23

17

19

20

21
22

24

77

80

50 96

97 98
99

100

101

102

103

105

106

29

30
85

ADOPT
82.   ES6
83.    React.js
84.    Spring Boot
85.   Swift

TRIAL
86.   Butterknife
87.   Dagger
88.   Dapper
89.   Ember.js
90.   Enlive
91.   Fetch
92.   React Native
93.   Redux
94.   Robolectric
95.   SignalR

ASSESS
96.   Alamofire
97.   AngularJS
98.   Aurelia
99.   Cylon.js
100. Elixir
101. Elm
102. GraphQL
103. Immutable.js
104. OkHttp
105. Recharts

HOLD
106. JSPatch

http://facebook.github.io/react/
https://thoughtworks.com/radar/languages-and-frameworks/angularjs
http://projects.spring.io/spring-boot
https://thoughtworks.com/radar/languages-and-frameworks/dropwizard
https://developer.apple.com/swift/
https://github.com/SwiftyJSON/SwiftyJSON
https://github.com/Quick/Quick
https://github.com/JakeWharton/butterknife
http://google.github.io/dagger/
https://github.com/StackExchange/dapper-dot-net
http://emberjs.com/
https://thoughtworks.com/radar/languages-and-frameworks/angularjs
https://thoughtworks.com/radar/languages-and-frameworks/es6


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  15

Our teams are moving away from JQuery or raw XHR 
for remote JavaScript calls and instead are using the 
new Fetch API and the Fetch polyfill in particular. The 
semantics remain similar but have cleaner support for 
promises and CORS support. We are seeing this as the 
new de-facto approach.

We are seeing continued success with React Native 
for rapid cross-platform mobile development. Despite 
some churn as it undergoes continuing development, 
the advantages of trivial integration between native and 
nonnative code and views, the rapid development cycle 
(instant reload, chrome debugging, Flexbox layout) and 
general growth of the React style is winning us over. As 
with many frameworks, care needs to be taken to keep 
your code well structured, but diligent use of a tool like 
Redux really helps here.

Redux is a great, mature tool that has helped 
many of our teams reframe how they think about 
managing state in client-side apps. Using a Flux-style 
approach, it enables a loosely coupled state-machine 
architecture that’s easy to reason about. We’ve found 
it a good companion to some of our favored JavaScript 
frameworks, such as Ember and React.

In the Android application-development world, 
Robolectric is a unit-testing framework that has been 
used by multiple teams within our technical community. 
It offers the best option among those available for 
writing real unit tests that extend or interact directly 
with Android components and support JUnit tests. We 
caution, though, that because it is an implementation of 
the Android SDK, there might be device-specific issues 
for some tests that pass in Robolectric. To manually 
mock all the Android dependencies, ensuring only test of 
the system-in-test will require a lot of complex code, and 
this framework addresses this effectively.

Networking and decoding in iOS applications have 
been a difficult endeavor for many years. There 
have been many libraries and attempts to solve this 
ongoing problem. It looks as though Alamofire is the 
most robust and developer-friendly library to handle 
decoding JSON. It was written by the same creator as its 
Objective-C counterpart (AFNetworking), which was used 
at great length during the Objective-C days.

While we have delivered many successful projects using 
AngularJS and are seeing an acceleration of adoption 
in corporate settings, we have decided to move 

Angular back to Assess on this edition of the Radar. 
This move is intended as a note of caution: React.
js and Ember offer strong alternatives; the migration 
path from Angular version 1 to version 2 is causing 
uncertainty; and we see some organizations adopting 
the framework without really thinking through whether 
a single-page application fits their needs. We have 
passionate internal debates about this topic but have 
certainly seen codebases become overly complex from 
a combination of two-way binding and inconsistent 
state-management patterns. We believe that rather 
than requiring that a solid framework be jettisoned, 
these issues can be solved through careful design and 
use of Redux or Flux from the outset.

Aurelia is considered the next-generation JavaScript 
client framework and was written using a modern 
version of JavaScript: ECMAScript 2016. Aurelia was 
created by Rob Eisenberg, the creator of Durandal. He 
left the Angular 2.0 core team to dedicate his time to 
this project. The great thing about Aurelia is that it’s 
highly modular, contains simple small libraries and is 
designed to be customized easily. Aurelia follows the 
pattern of convention over configuration, which enables 
easier production and consumption of modules, but 
there are no strong conventions that you have to adhere 
to. Aurelia has a large community, and in the project 
website you can learn more by using the tutorials.

The intersection between IoT devices and the JavaScript 
ecosystem offers interesting possibilities. Cylon.js is a 
JavaScript library for building interfaces for robotics and 
the Internet of Things, which has excited our technical 
community. It offers support for 50+ platform devices, 
as well as general-purpose input/output support with 
a shared set of drivers provided by the cylon-gpio 
module. Control of the devices is then possible through 
a web browser interface.

We continue to see a lot of excitement from people using 
the Elixir programming language. Elixir, which is built on 
top of the Erlang virtual machine, is showing promise for 
creating highly concurrent and fault-tolerant systems. 
Elixir has distinctive features such as the Pipe operator, 
which allows developers to build a pipeline of functions 
as you would in the UNIX command shell. The shared 
byte code allows Elixir to interoperate with Erlang and 
leverage existing libraries while supporting tools such as 
the Mix build tool, the Iex interactive shell and the ExUnit 
unit testing framework.

LANGUAGES & FRAMEWORKS continued

https://fetch.spec.whatwg.org/
https://github.com/github/fetch
https://facebook.github.io/react-native/
https://thoughtworks.com/radar/languages-and-frameworks/redux
http://redux.js.org/
https://thoughtworks.com/radar/techniques/flux
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
https://thoughtworks.com/radar/languages-and-frameworks/react-js
http://robolectric.org/
https://github.com/Alamofire/Alamofire
https://angularjs.org/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
http://aurelia.io/
http://durandaljs.com/
https://angular.io/
https://cylonjs.com/
http://elixir-lang.org/


© April 2016, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR APRIL 2016  |  16

ThoughtWorks is a software company and community 
of passionate, purpose-led individuals that specialize 
in software consulting, delivery and products. We think 
disruptively to deliver technology to address our clients’ 
toughest challenges, all while seeking to revolutionize 
the IT industry and create positive social change. We 
make pioneering tools for software teams who aspire to 
be great. Our products help organizations continuously 
improve and deliver quality software for their most 

critical needs. Founded over 20 years ago, ThoughtWorks 
has grown from a small group in Chicago to a company 
of over 3500 people spread across 35 offices in 12 
countries:  Australia, Brazil, Canada, China, Ecuador, 
Germany, India, Singapore, South Africa,Turkey, the 
United Kingdom, and the United States.

We have been prompted to reconsider Elm because 
of the rapid adoption of Redux framework. Elm—
the original inspiration for Redux—offers the view 
componentization and reactiveness of React.js along 
with the predictable state of Redux in a compiled, 
strongly typed functional language. Elm is written in 
Haskell and has a Haskell-like syntax but compiles 
down to HTML, CSS and JavaScript for the browser. 
JavaScript programmers rushing to embrace React.js and 
Redux might want to also consider Elm as a type-safe 
alternative for some applications.

When we look at REST implementations in the wild, we 
frequently see REST misused to naively retrieve object 
graphs through chatty interactions between client 
and server. Facebook’s GraphQL is an interesting 
alternative to REST that might be a better approach 
for this very common use case. As a protocol for 
remotely retrieving object graphs, GraphQL has 
received enormous attention recently. One of 
GraphQL’s most interesting features is its consumer-
oriented nature: The structure of a response is driven 
entirely by the client, not the server. This decouples 
the consumer and forces the server to obey Postel’s 
law. Client implementations are now available in 
many programming languages, but we have seen a 
flurry of interest of Facebook’s Relay, a JavaScript 
framework that was designed to support the React.js 
stateless component model.

Immutability is often emphasized in the functional 
programming paradigm, and most languages have the 
ability to create immutable objects, which cannot be 
changed once created. Immutable.js is a library for 
JavaScript that provides many persistent immutable data 
structures, which are highly efficient on modern JavaScript 
virtual machines. Immutable.js objects are, however, not 
normal JavaScript objects, so references to JavaScript 
objects from immutable objects should be avoided. 
Our teams have had value using this library for tracking 
mutation and maintaining state, and it is a library we 
encourage developers to investigate, especially when it’s 
combined with the rest of the Facebook stack.

We’ve been enjoying how Recharts integrates D3 charts 
into React.js in a clean and declarative manner.

Many iOS developers are using JSPatch to dynamically 
patch their apps. When a JSPatch-enabled app runs, it 
loads a chunk of JavaScript (potentially via an insecure 
HTTP connection) and then bridges to the main Objective-C 
application code to change behavior, fix bugs, and so on. 
While convenient, we think monkey-patching live apps is a 
bad idea and should be avoided. When doing any amount 
of incremental patching, it’s very important that your 
testing process matches what end users will experience, 
in order to properly validate functionality. An alternative 
approach is to use React Native for the app and AppHub 
and CodePush to push small updates and new features.

https://thoughtworks.com
http://elm-lang.org/
https://thoughtworks.com/radar/languages-and-frameworks/redux
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://github.com/facebook/graphql
https://facebook.github.io/relay/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://facebook.github.io/immutable-js/
http://recharts.org/
https://thoughtworks.com/radar/tools/d3
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://github.com/bang590/JSPatch
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://apphub.io/
https://microsoft.github.io/code-push/

