
MAY 2013

Prepared by the ThoughtWorks Technology Advisory Board

Technology Radar

thoughtworks.com/radar

© May 2013, ThoughtWorks, Inc. All Rights Reserved. Technology Radar - May 2013 - 2

What’s New?

Here are the trends highlighted in this edition:
•	 Embracing	falling	boundaries—Whether you like it or not, boundaries are falling down around you. We choose to embrace this
 by examining concepts like perimeterless enterprise, development environments in the cloud, and co-location by telepresence.

•	 Applying	proven	practices	to	areas	that	somehow	missed	them—We are not really sure why, but many in our industry have
 missed ideas like capturing client side javaScript errors, continuous delivery for mobile, database migrations for NoSQL, and
 frameworks for CSS.

•	 Lightweight	options	for	analytics—Data science and analytics are not just for people with a PhD in the field. We highlight
 collaborative analytics and data science, where all developers understand the basics and work closely with experts
 when necessary.

•	 Infrastructure	as	code—Continuous delivery and DevOps have elevated our thinking about infrastructure.
 The implications of thinking about infrastructure as code and the need for new tools are still evolving.

ThoughtWorkers are passionate about technology. We build it, research it, test it, open source it, write about it, and constantly
aim to improve it – for everyone. Our mission is to champion software excellence and revolutionize IT. We create and share the
ThoughtWorks Technology Radar in support of that mission. The ThoughtWorks Technology Advisory Board, a group of senior
technology leaders in ThoughtWorks, creates the radar. They meet regularly to discuss the global technology strategy
for ThoughtWorks and the technology trends that significantly impact our industry.

The radar captures the output of the Technology Advisory Board’s discussions in a format that provides value to a wide range
of stakeholders, from CIOs to developers. The content is intended as a concise summary. We encourage you to explore these
technologies for more detail. The radar is graphical in nature, grouping items into techniques, tools, platforms, and languages
& frameworks. When radar items could appear in multiple quadrants, we chose the one that seemed most appropriate.
We further group these items in four rings to reflect our current position on them. The rings are:

•	 Adopt: We feel strongly that the industry should be adopting these items. We use them when appropriate on our projects.
• Trial: Worth pursuing. It is important to understand how to build up this capability. Enterprises should try this technology
 on a project that can handle the risk.
• Assess: Worth exploring with the goal of understanding how it will affect your enterprise.
• Hold: Proceed with caution.

Items that are new or have had significant changes since the last radar are represented as triangles, () while items that have
not moved are represented as circles (). The detailed graphs for each quadrant show the movement that items have taken.
We are interested in far more items than we can reasonably fit into a document this size, so we fade many items from the last
radar to make room for the new items. Fading an item does not mean that we no longer care about it.

For more background on the radar, see http://martinfowler.com/articles/radar-faq.html

Contributors - The ThoughtWorks Technology Advisory Board is comprised of:
Rebecca Parsons (CTO)
Martin Fowler
(Chief Scientist)
Badri Janakiraman
Darren Smith

Erik Doernenburg
Evan Bottcher
Hao Xu
Ian Cartwright
James Lewis

Jeff Norris
Mike Mason
Neal Ford
Rachel Laycock
Ronaldo Ferraz

Sam Newman
Scott Shaw
Srihari Srinivasan
Thiyagu Palanisamy

Technology Radar - May 2013 - 3

The Radar
28

17

18

21

16

20

14

4

3

1

2

31

35

36
41

51

43

44

42

50

87

95

101

9694

100

93

88

89

102

104
99

90

63

56

57
59

6260

79

75

72

83

84

81

22

2324

26

27

25

19

9 15

5

3032

29

33

37

39

40

45

38

49

47

46
48

91

82

85

92

86

97

98

103

13

10

12
11

7
8

6

64

55

53

52

54

58

67
65

61

66

8073
74

76

68

77

71

70

69

78

Hold HoldAssess AssessTrial TrialAdopt Adopt

34

Techniques
ADOPT
1 Aggregates as documents
2 Automated deployment pipeline
3 Guerrilla testing
4 In-process acceptance testing
5 Mobile testing on mobile networks
6 Performance testing as a first-class citizen
7 Promises for asynchronous programming
8 Windows infrastructure automation
TRIAL
9 Analyzing test runs
10 Blue-green deployment
11 Co-location by telepresence
12 Continuous delivery for mobile devices
13 Database migrations for NoSQL
14 Edge Side Includes for page composition
15 HTML5 storage instead of cookies
16 Logs as data
17 Micro-services
18 Mobile first
19 Perimeterless enterprise
20 Responsive web design
21 Semantic monitoring
ASSESS
22 Capturing client-side JavaScript errors
23 Collaborative analytics and data science
24 Development environments in the cloud
25 Focus on mean time to recovery
26 Machine image as a build artifact
27 Minimizing application configuration
HOLD
28 Exhaustive browser based testing

Platforms
ADOPT
29 Elastic Search
30 MongoDB
31 Neo4J
32 Redis
33 SMS and USSD as a UI
TRIAL
34 BigQuery
35 Continuous integration in the cloud
36 Couchbase
37 Hadoop 2.0
38 Node.js
39 OpenStack
40 Rackspace Cloud
41 Riak
ASSESS
42 Azure
43 Calatrava
44 Datomic
45 PhoneGap/Apache Cordova
46 PostgreSQL for NoSQL
47 Vumi
48 Zepto.js
HOLD
49 Big enterprise solutions
50 Singleton infrastructure
51 WS-*

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

New or moved
No change

Technology Radar - May 2013 - 4

The Radar
28

17

18

21

16

20

14

4

3

1

2

31

35

36
41

51

43

44

42

50

87

95

101

9694

100

93

88

89

102

104
99

90

63

56

57
59

6260

79

75

72

83

84

81

22

2324

26

27

25

19

9 15

5

3032

29

33

37

39

40

45

38

49

47

46
48

91

82

85

92

86

97

98

103

13

10

12
11

7
8

6

64

55

53

52

54

58

67
65

61

66

8073
74

76

68

77

71

70

69

78

Hold HoldAssess AssessTrial TrialAdopt Adopt

34

Tools
ADOPT
52 D3
53 Embedded servlet containers
54 Frank
55 Gradle
56 Graphite
57 Immutable servers
58 NuGet
59 PSake
TRIAL
60 Apache Pig
61 Gatling
62 Jekyll
63 Locust
64 Logstash & Graylog2
65 PhantomJS
66 Puppet-librarian and Chef-librarian
67 TestFlight & HockeyApp
ASSESS
68 Browser-based templating
69 Faraday
70 Hystrix
71 Icon fonts
72 Light Table
73 Octopus
74 Reactive Extensions for .Net
75 Riemann
76 Snowplow Analytics
77 UIAutomator
HOLD
78 Heavyweight test tools
79 Maven
80 TFS

Languages & Frameworks
ADOPT
81 Clojure
82 CSS frameworks
83 Jasmine paired with Node.js
84 Scala
85 Sinatra
TRIAL
86 CoffeeScript
87 Dropwizard
88 HTML5 for offline applications
89 JavaScript as a platform
90 JavaScript MV* frameworks
91 Play Framework 2
92 Require.js & NPM
93 Scratch, Alice, and Kodu
ASSESS
94 ClojureScript
95 Gremlin
96 Lua
97 Nancy
98 OWIN
99 RubyMotion
100 Twitter Bootstrap
HOLD
101 Backbone.js
102 Component-based frameworks
103 Handwritten CSS
104 Logic in stored procedures

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Technology Radar - May 2013 - 5

Techniques

For years, teams and organizations have seen the dangers of
siloing expertise around technical disciplines. While we value
input from experts on advanced applications, developers
should have basic knowledge of user interfaces, databases,
and data science, the newest industry darling. While advanced
applications requires deep expertise, we are pushing for
collaborative	analytics	and	data	science, where all developers
use basic statistical analysis and tools to make better decisions,
and work closely with experts when things get complicated.

Technology trends have broken down the garden walls
that used to surround corporate IT networks and lead to a
perimeterless	enterprise. Employees frequently use their
own consumer devices to access corporate data through
cloud services and web APIs, often without the organization’s
knowledge. As devices continue to proliferate and more
applications move to the cloud, businesses are being forced
to rethink fundamental assumptions about data access and
network security.

Development	environments	in	the	cloud allow you to entirely
outsource development infrastructure, leaving your team with
nothing more than laptops and an internet connection. By
using a combination of best-of-breed services such as private
GitHub repositories and Snap CI’s continuous integration in the
cloud, your teams may never need to bother in-house IT for
infrastructure again.

Increasing quality and range of choices for inexpensive or
free video conferencing is leading to a new way of working
for distributed teams. Always-on video connections can help
create a sense of co-location	by	telepresence, even when the
team is distributed geographically. This is becoming the defacto
standard in some of our offshore delivery centers. We are also
seeing increased use of screen-sharing tools like ScreenHero
for remote pairing. We would caution those looking for a silver
bullet to eliminate the need for physical co-location. There is no
substitute for the understanding and empathy created by face-
to-face communication.

Application configuration can be a source of pain when getting
started with a new tool, managing deployments to different
environments, or trying to understand why applications behave
differently in different places. We are a big fan of minimizing
application	configuration, trying to ensure that applications
work sensibly out of the box with the bare minimum of
configuration.

Most virtualization technologies provide a way to launch a
machine from an image. By creating a machine	image	as	a	
build	artifact early in your build pipeline and promoting it
through the pipeline as it passes further suites of tests, you
can reliably deploy the exact machine that passed the tests
into production. This technique eliminates most causes of the
snowflake server anti-pattern.

Blue-green	deployment is a pattern for performing software
upgrades. By setting up the latest version of your application
on an identical clone of your production application stack,
traffic can be switched, near instantaneously, from the current
production stack to the new one as soon as the test suite and
the business determine it is appropriate. Though this is an old
technique, infrastructure automation and resources in the cloud
make it worth reconsidering.

28

17

18

21

16

20

14

4

3

1

2

31

35

36
41

51

43

44

42

50

87

95

101

9694

100

93

88

89

102

104
99

90

63

56

57
59

6260

79

75

72

83

84

81

22

2324

26

27

25

19

9 15

5

3032

29

33

37

39
34

40

45

38

49

47

46
48

91

82

85

92

86

97

98

103

13

10

12
11

7

64

55

53

52

54

58

67
65

61

66

8073
74

76

68

77

71

70

69

78

Hold HoldAssess AssessTrial TrialAdopt Adopt

Hold HoldAssess AssessTrial TrialAdopt Adopt

8

6

ADOPT
1 Aggregates as documents
2 Automated deployment pipeline
3 Guerrilla testing
4 In-process acceptance testing
5 Mobile testing on mobile networks
6 Performance testing as a first-class
 citizen
7 Promises for asynchronous
 programming
8 Windows infrastructure automation

TRIAL
9 Analyzing test runs
10 Blue-green deployment
11 Co-location by telepresence
12 Continuous delivery for mobile devices
13 Database migrations for NoSQL
14 Edge Side Includes for page
 composition
15 HTML5 storage instead of cookies
16 Logs as data
17 Micro-services

18 Mobile first
19 Perimeterless enterprise
20 Responsive web design
21 Semantic monitoring

ASSESS
22 Capturing client-side JavaScript errors
23 Collaborative analytics and data science
24 Development environments in the cloud
25 Focus on mean time to recovery

26 Machine image as a build artifact
27 Minimizing application configuration

HOLD
28 Exhaustive browser based testing

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Techniques

Previously, support for Windows in tools like Chef and Puppet
was lacking, leading to large amounts of Powershell scripting to
achieve simple infrastructure automation tasks. Achieving the
same level of automation for Windows was more challenging
than for Unix. In the last 12 months however, both Chef and
Puppet support for Windows has improved drastically. That
support, combined with the inherent power of Powershell
makes Windows	infrastructure	automation extremely viable.

HTML5 storage, also known as local storage or web storage, is
a mechanism for storing client side data in modern browsers,
including iOS and Android mobile browsers. We recommend
using HTML5	storage	instead	of	cookies in almost all cases.
HTML5 Storage can accommodate up to 5MB of data while
cookies are limited to 4KB. Cookie data is transmitted in every
request, which slows down your application and potentially
exposes data over insecure HTTP connections. In contrast,
HTML5 storage data remains securely in the browser. Cookies
should be reserved for storing small simple pieces of data like a
session ID.

The use of promises	for	asynchronous	programming is an old
technique that is also known as futures. It is gaining renewed
interest in light of the extensive use of JavaScript on both the
client and server side. This technique eliminates the use of
deeply nested callbacks, flags and pollers and has first-class
support from libraries such as jQuery. Teams developing
JavaScript codebases of significant complexity should take
advantage of this.

Capturing	client-side	JavaScript	errors has helped our
delivery teams to identify issues specific to a browser or plug-
in configuration that impact user experience. Over the past
year a number of service providers have started to surface in
support of this requirement. Other than storing these errors
in application data stores web applications can log this data to
web analytics or existing monitoring tools such as New Relic to
offload storage requirements.

With HTML5 blurring the line between traditional native apps
and web apps, we are beginning to experiment with continuous	
delivery	for	mobile	devices. Services such as TestFlight allow
you to deploy native apps to real devices multiple times per day.
With a wholly or partially HTML5-based application changes
can be deployed without submitting a new app to an app
store. If your organization has an enterprise app store, you
may be able to easily push builds to it. While the techniques
for implementing CD to mobile devices are improving, we note
that testing practices are lagging behind. To be successful you
will need to increase your focus on automated testing to ensure
that everything actually works once it gets to the device.

We increasingly see mobile applications that work really well
during development and testing, but run into trouble when
they are deployed in the real world. Mobile	testing	on	mobile	
networks reveals how your app performs under a variety of
conditions. You might test using 3G or LTE or deliberately use
a poor WiFi network with overloaded access points. Measure
network performance for your target environment, then
simulate the conditions using latency and packet-loss inducing
tools. In addition, it is sometimes necessary to examine exactly
how your device and software are using the network with a tool
such as Wireshark.

NoSQL data stores continue to become mainstream, and
teams should acknowledge the need for database	migrations	
for	NoSQL. Especially with an implicit or dynamic schema you
are likely to want to reconfigure data over time. There are
several approaches such as running an explicit migration when
deploying a new build of your application, or using dynamic
migrations in code as documents are loaded and processed.

Failing tests reveal bugs in production code. However,
analyzing	test	runs for other properties can reveal interesting
information. A simple example would be to monitor which tests
fail frequently and run them earlier in your build pipeline to get
fast feedback. Similarly, tracking other properties such as test
execution times and ratios of long-running tests to fast-tests
can provide actionable metrics.

In previous radars we recommended arranging automated
acceptance tests into longer journeys and, in what we call
semantic monitoring, running these tests continuously against
a production environment. We still believe that this is an
important technique for scenarios the team can anticipate
in advance. A variation of this approach, seen especially with
startups, is to reduce the number of tests while increasing
monitoring and automatic alarms. This shifts the focus from
avoiding problems that can be anticipated to reducing	mean	
time	to	recovery for all problems.

While unit and acceptance testing are widely embraced as
standard development practices, this trend has not continued
into the realm of performance testing. Currently, the common
tooling drives testers towards creating throw away code and a
click and script mentality. Treating performance	testing	as	a	
first-class	citizen enables the creation of better tests that cover
more functionality, leading to better tooling to create and run
performance tests, resulting in a test suite that is maintainable
and can itself be tested.

Technology Radar - May 2013 - 6© May 2013, ThoughtWorks, Inc. All Rights Reserved.

In previous radars we have talked about embedded	servlet	
containers, and these are now widely adopted on our projects.
Tools such as SimpleWeb and Webbit take the simple, embedded
approach further and offer raw HTTP server functionality without
implementing the Java Servlet specification. At the same time,
Tomcat, the most popular Java application server, is increasingly
used in embedded setups and Microsoft provides self-hosted
servers for the .NET framework, lending further weight to this
trend.

D3 continues to gain traction as a library for creating rich
visualisations in the browser. Previously, it was somewhat low-
level, requiring more work for the creation of commonly used
visualisations than less sophisticated, more targeted libraries.
Since the last radar, libraries like Rickshaw for charting and
Crossfilter for in-browser dataset exploration have helped make
D3 even more accessible than before.

We see several JavaScript frameworks embrace browser-based	
templating, moving more layout work to the client. While this
approach is useful in many cases, it does introduce operational
issues involving caching, performance, and search. We believe
these tools should be assessed carefully to ensure suitability for
the target deployment environment.

By putting IObservables and IObservers on an equal footing with
IEnumerables and IEnumerators, Rx	for	.NET allows developers
to use their existing knowledge of LINQ (Language INtegrated
Query) operators to query and compose asynchronous
operations and event-based code using a common underlying
abstraction of observable event streams. Microsoft has also
released RxJS to bring the benefits of reactive programming to
JavaScript. They open sourced the entire Rx framework, making
it useful for Windows rich client applications and single-page
JavaScript applications.

Several ThoughtWorks teams called out the usefulness of
Faraday, a Ruby HTTP client library that provides a common
interface over a variety of adapters and integrates nicely with
Rack middleware.

Package systems for third-party library management continue to
gain acceptance and features across all platforms. We called out
NuGet as a recent entry, and the addition of Chocolatey	NuGet
exemplifies the advances and capabilities springing up around
this essential agile engineering practice.

Technology Radar - May 2013 - 7

28

17

18

21

16

20

14

4

3

1

2

31

35

36
41

51

43

44

42

50

87

95

101

9694

100

93

88

89

102

104
99

90

63

56

57
59

6260

79

75

72

83

84

81

22

2324

26

27

25

19

9 15

5

3032

29

33

37

39
34

40

45

38

49

47

46
48

91

82

85

92

86

97

98

103

13

10

12
11

7

64

55

53

52

54

58

67
65

61

66

8073
74

76

68

77

71

70

69

78

Hold HoldAssess AssessTrial TrialAdopt Adopt

Hold HoldAssess AssessTrial TrialAdopt Adopt

8

6

Windows infrastructure automation should be adopted, however
it still remains more difficult than automation on a Unix platform.
Tools like Chef and Puppet are increasing their support, but
there are also Windows specific solutions being developed
like Octopus. Octopus allows automated deployment of your
ASP.NET applications and Windows services and decreases
dependency on PowerShell. It can be used with both NuGet
using Octopak and TeamCity to create a full build, package, and
deployment pipeline.

Both Puppet and Chef have had to deal with sharing community-
contributed modules and manifests for commonly used services
and tasks. Both the Puppet Forge and Chef’s Cookbook repository
have helped, but people ended up copying and pasting these
recipes into their own codebases, preventing them from taking
advantage of later bugfixes and improvements. Puppet-librarian	
and	Chef-librarian attempt to solve this by making it easy to
declare your module dependencies, including pulling in known
versions of code from these community sites.

Tools

ADOPT
52 D3
53 Embedded servlet containers
54 Frank
55 Gradle
56 Graphite
57 Immutable servers
58 NuGet
59 PSake

TRIAL
60 Apache Pig
61 Gatling
62 Jekyll
63 Locust
64 Logstash & Graylog2
65 PhantomJS
66 Puppet-librarian and Chef-librarian
67 TestFlight & HockeyApp

ASSESS
68 Browser-based templating
69 Faraday
70 Hystrix
71 Icon fonts
72 Light Table
73 Octopus
74 Reactive Extensions for .Net
75 Riemann

76 Snowplow Analytics
77 UIAutomator

HOLD
78 Heavyweight test tools
79 Maven
80 TFS

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Managing dependencies in distributed systems can become
complicated, and is a problem more people are facing with the
move to finer-grained micro services. Hystrix is a library for
the JVM from Netflix that implements patterns for dealing with
downstream failure, offers real-time monitoring of connections,
and caching and batching mechanisms to make inter-service
dependencies more efficient.

Both TestFlight	and	HockeyApp allow you to manage the
deployment of mobile applications without an app store, making
user testing easier. They offer crash reporting and analytic
capabilities to gather data in the field. HockeyApp supports IOS,
Android, & Windows Phone, while TestFlight supports iOS and
Android. We have used both tools successfully to help deliver
mobile applications. This is clearly a fast evolving space.

Frank is an open source library that allows functional tests for
iOS written in Cucumber and executed on a remote device.
This fills an important niche where acceptance test-driven
development was previously cumbersome and awkward.

UIAutomator looks like the most promising tool for testing
Android user interfaces by allowing fine-grained control over
components during test and facilitating testing on multiple
devices.

With the rise of devices with multiple form factors and pixel
densities, the issue of presenting high quality icons at all scales
has become important. Icon fonts solve this problem by using
browser support for WebFonts and SVG instead of scaled images
or maintaining different icon sets. As always, when making
extensive use of SVG, pay attention to power consumption on
mobile devices and performance on older devices.

As the systems we build involve more fine-grained services
spread across more machines than ever before, the challenge
of how to get information aggregated to allow for easy problem
identification and resolution is more pressing than ever.
Logstash has emerged as an easy way to parse and filter logs
at source, and then forward them to a single aggregation point.
Although Logstash provides some searching and filtering,
Graylog2 is often used in conjunction to provide for more fully-
featured querying and reporting.

We see great promise in Snowplow	Analytics, an open source
web analytics platform that derives intelligent information from
regular web analytics, based on open data principles and cloud
storage.

Tools

Technology Radar - May 2013 - 8

We see interest on ThoughtWorks projects around PhantomJS, a
headless web testing tool that allows functional testing against a
realistic target.

Gatling is another newer player in the automated performance
testing space. It is similar to Locust and is much lighter weight
than the older options such as JMeter and Grinder. Built on Scala,
the DSL provides extensive functionality out of the box including
easily configured data feeds and response assertions. In cases
where customization is needed, it is easy to drop into Scala to
provide extensions. The default generation of numerous dynamic
views of the data via Highcharts adds to its appeal.

Many organizations that have moved to more agile ways of
working continue to use heavyweight	testing	tools. These
tools have problems that make them unsuitable for fast moving
software delivery. Large complex tools have high learning
curves and require specialist skills and training, making it
hard for the team themselves to test. Often this results in an
unnecessary overhead for every release as other teams get
involved. Expensive and limiting software licenses makes this
problem even worse. Some heavyweight tools use a “model
driven” approach where an attempt is made to accurately model
the usage patterns of the application, which leads to costly test
script maintenance and development time being lost to “false
positives.” We have seen few situations where simple open
source solutions cannot give the required level of confidence for
much less time, effort and money.

Language-based build tools like Gradle and Rake continue to
offer finer-grained abstractions and more flexibility long term
than XML and plug-in based tools like Ant and Maven. This allows
them to grow gracefully as projects become more complex.

We continue to see teams run into productivity problems
attempting to use TFS as a version control system. Teams
that want to practice frequent code checkins, a core part of
continuous integration, have found its heavyweight approach
significantly drains productivity. This often leads to teams
checking in less frequently, causing more problematic merges.
We recommend tools such as Git, Perforce, and Subversion
instead.

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Platforms

Technology Radar - May 2013 - 9

PostgreSQL is expanding to become the NoSQL choice of
SQL databases. Version 9.2 includes the ability to store JSON
data with full querying capabilities on the content of the JSON
document. Other extensions let the user store and query data
in the form of key/value pairs. This lets you take advantage
of the underlying storage and transactional capabilities of a
time-tested database without being tied to a relational data
model. This is ideal for those who want both SQL and NoSQL
applications but prefer a single reliable infrastructure that they
already know how to support.

The amount of data that even a relatively low volume website
can generate is huge. Once you add in analytics, business
metrics, demographics, user profiles and multiple devices,
it can become overwhelming. Many organizations use data
warehouses as a repository with data being sucked in from all
parts of the organization. The challenge here is that these often
turn into “Data Fortresses.” Even getting timely business metrics
becomes a challenge, let alone running exploratory queries
across the entire data set. Technologies like the cloud based
BigQuery help. The pay-as-you-go model and the ability to do
ad hoc queries lets you gain insight without buying specialist
hardware and software. A data-driven business should put
data in the hands of the decision makers, not hidden behind
technological barriers and bureaucracy.

28

17

18

21

16

20

14

4

3

1

2

31

35

36
41

51

43

44

42

50

87

95

101

9694

100

93

88

89

102

104
99

90

63

56

57
59

6260

79

75

72

83

84

81

22

2324

26

27

25

19

9 15

5

3032

29

33

37

39
34

40

45

38

49

47

46
48

91

82

85

92

86

97

98

103

13

10

12
11

7

64

55

53

52

54

58

67
65

61

66

8073
74

76

68

77

71

70

69

78

Hold HoldAssess AssessTrial TrialAdopt Adopt

Hold HoldAssess AssessTrial TrialAdopt Adopt

8

6

For problems that fit the document database model, MongoDB
is now the most popular choice. In addition to ease of use and a
solid technical implementation, the community and ecosystem
contributed to this success. We are aware of problems where
teams were tempted by the popularity of MongoDB when
a document database was not a good fit or they did not
understand the inherent complexity. When used appropriately,
however, MongoDB has proven itself on many projects.

Redis has proven a useful tool on multiple ThoughtWorks
projects, used as both structured cache and data store
distributed across multiple countries.

Hadoop initial architecture was based on the paradigm of
scaling data horizontally and metadata vertically. While data
storage and processing were handled by the slave nodes
reasonably well, the masters that managed metadata were
a single point of failure and limiting for web scale usage.
Hadoop	2.0 has significantly re-architected both HDFS and the
Map Reduce framework to address these issues. The HDFS
namespace can be federated now using multiple name nodes
on the same cluster and deployed in a HA mode. MapReduce
has been replaced with YARN, which decouples cluster resource
management from job state management and eliminates
the scale/performance issues with the JobTracker. Most
importantly, this change encourages deploying new distributed
programming paradigms in addition to MapReduce on Hadoop
clusters.

Over the past year we have seen a gradual uptake in the
adoption of Elastic	Search as an open source search platform.
It is an extensible, multi-tenanted, and horizontally scalable
search solution based on Apache Lucene. It allows complex
data structures to be indexed and retrieved through a JSON
based REST API. It provides an elegant model of operation
with automatic discovery of peers in a cluster, failover, and
replication. Elastic Search can be extended with a plugin system
that allows adding new functionality and changing existing
behavior. The community around this tool is quite vibrant
as illustrated by the number of client libraries available in
languages like Java, C#, Ruby, and JavaScript.

ADOPT
29 Elastic Search
30 MongoDB
31 Neo4J
32 Redis
33 SMS and USSD as a UI

TRIAL
34 BigQuery
35 Continuous integration in the cloud
36 Couchbase
37 Hadoop 2.0
38 Node.js
39 OpenStack

40 Rackspace Cloud
41 Riak

ASSESS
42 Azure
43 Calatrava
44 Datomic
45 PhoneGap/Apache Cordova

46 PostgreSQL for NoSQL
47 Vumi
48 Zepto.js

HOLD
49 Big enterprise solutions
50 Singleton infrastructure
51 WS-*

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Platforms

Technology Radar - May 2013 - 10

Node.js is a lightweight web container that is a strong option
for development of micro services and as a server to mobile
and single-page web applications. Due to the asynchronous
nature of node.js, developers are turning to promise libraries
to simplify their application code. As the use of promises
mature within the node.js community, we expect to see more
applications developed for node.js. For those teams that are
reluctant to try node.js in production, it is still worthwhile to
consider node.js for development tasks like running JavaScript
tests outside of the browser or generating static web content
from tools like CoffeeScript, SASS, and LESS.

Zepto.js is a lightweight JavaScript library that is largely based
on JQuery. The API is identical to JQuery although it does not
offer full compatibility with it. With a vastly compressed file size,
Zepto is a compelling option when building responsive web
applications.

PhoneGap, now renamed as Apache	Cordova, is a platform
that lets you develop cross-platform mobile applications using
HTML, CSS and JavaScript. It abstracts away platform specific
native code through a set JavaScript APIs that remain consistent
across different mobile platforms. Cordova is available for a
wide array of platforms including iOS, Android, Blackberry,
Windows Phone, and WebOS.

While AWS continues to add more features, Rackspace	Cloud
has become a viable competition in the storage and compute
space. Some users may value the more thorough customer
support available for Rackspace, as well as the ability to mix in
more traditional hosting models. We are not excited about this
just because Rackspace is a client of ours and we have had the
pleasure developing the platform. We have successfully used
Rackspace Cloud with several other clients, and would look
forward to it being offered in more geographical locations.

The open source OpenStack project is gathering steam, and
in recent months is becoming a more viable platform for
deploying your own private clouds. Many issues which made
OpenStack hard to get up and running have been addressed,
and new features are being added all the time. It is clear that
the OpenStack consortium and its members like Rackspace,
Redhat, and HP are committed to the project as the basis for
their own OpenStack-based cloud services.

58% of all phones sold last year globally were feature phones.
In many developing countries, this is an even larger majority. If
your market requires you to develop for these areas, you need
to develop with this constraint in mind. These phones use SMS	
and	USSD	as	a	user	interface. SMS is a long standing technique
for sending messages, and USSD allows you to send SMS like
messages in a secure session. You should look at USSD and
SMS as another UI and UX platform and treat them as first-class
citizens.

Vumi is a scalable open source messaging engine driving
conversations through frugal methods on mobile devices.
Vumi facilitates SMS, IM and USSD interactions between
companies and their clients, health services and their patients,
governments and citzens, and more. Vumi integrates with telcos
and allows you to build apps on top of it easily. You only have to
pay for carrier charges.

The gap between what “enterprise-class” commercial
packages provide and what is actually needed is widening.
This is especially true for internet facing applications.
Innovative solutions that really scale and easily support
modern techniques such as continuous delivery are written
by practitioners for practitioners. They originate with many
internet scale companies and are refined as open source
software. Big	enterprise	solutions often obstruct effective
delivery due to their accumulated bloat, cumbersome licensing
restrictions, and feature sets that are driven by check-lists and
imaginary requirements far removed from the realities of most
development teams.

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Languages & Frameworks

Technology Radar - May 2013 - 11

Single-page web application development continues to flourish
along with the frameworks supporting data binding, client-side
templates, validation, and other capabilities. The JavaScript	MV*	
frameworks in active use on ThoughtWorks projects include
AngularJS,	Knockout, and Ember.js. Each has advocates and a
few detractors. We expect continuing innovative churn in this
vibrant space.

The expansion of single-page and mobile browser-based
applications into mainstream use, along with continued
growth of node.js for server-side applications, have led to
increased adoption of CoffeeScript to simplify JavaScript
codebases. As a language that compiles into JavaScript code
for runtime execution, many concerns have been raised about
the difficulty of debugging applications written in CoffeeScript.
The introduction of Source Maps in CoffeeScript 1.6.1 is
helping producers of development tools address this concern.
We expect this will lead to further adoption of the language
following the lead of highly visible technology firms such as
Dropbox.

Our continued use of node.js on new production applications
has re-enforced our need for reliable packaging of JavaScript
code and libraries. The Node	Package	Manager	(npm) is an
important part of the node.js ecosystem and a useful tool
for packaging node.js applications. Developers of browser
applications with large amounts of JavaScript or CoffeeScript
should consider Require.js to help with structuring their code
and loading dependencies at run time.

Micro-frameworks are emerging as a way to handle increasing
complexity in applications both on client- and server-side.
Sinatra was one of the first examples of that trend in the server-
side space, exposing a lightweight DSL to build fast services that
can be easily composed. Similar offerings are available for other
languages, including Spark for Java, Flask for Python, Sclatra for
Scala, Compojure for Clojure and Nancy for .NET.

One thing that has slowed the evolution of a rich, open source
web development ecosystem on the .NET platform has been
over-dependence on IIS and the ASP.NET framework. OWIN
specifies an open HTTP handling interface that decouples web
server from application much like Rack has done for the Ruby

community. We are excited about OWIN because it opens up
the possibility of new .NET web development tools composed of
simple, independently-developed modules. Nancy is the perfect
example of this. We also hope it will increase the practice of
deploying web applications as standalone, self-hosted services
on the .NET platform.

The recent release of Play	Framework 2.1.1 with support for
controller dependency injection, asynchronous, non-blocking
I/O, a code-reload workflow, database migrations, asset
pipelining, and flexible deployment options has made it more
attractive to developers. For this reason Play re-appears on
the radar as something for teams to seriously consider when
building web applications and services on the JVM. A word of
caution however, Play embraces a functional programming style
which, when working with the Java language, still translates into
a plethora of static methods that may be difficult to unit test
outside a running server.

28

17

18

21

16

20

14

4

3

1

2

31

35

36
41

51

43

44

42

50

87

95

101

9694

100

93

88

89

102

104
99

90

63

56

57
59

6260

79

75

72

83

84

81

22

2324

26

27

25

19

9 15

5

3032

29

33

37

39
34

40

45

38

49

47

46
48

91

82

85

92

86

97

98

103

13

10

12
11

7

64

55

53

52

54

58

67
65

61

66

8073
74

76

68

77

71

70

69

78

Hold HoldAssess AssessTrial TrialAdopt Adopt

Hold HoldAssess AssessTrial TrialAdopt Adopt

8

6

ADOPT
81 Clojure
82 CSS frameworks
83 Jasmine paired with Node.js
84 Scala
85 Sinatra

TRIAL
86 CoffeeScript
87 Dropwizard
88 HTML5 for offline applications
89 JavaScript as a platform
90 JavaScript MV* frameworks
91 Play Framework 2
92 Require.js & NPM
93 Scratch, Alice, and Kodu

ASSESS
94 ClojureScript
95 Gremlin
96 Lua
97 Nancy
98 OWIN
99 RubyMotion
100 Twitter Bootstrap

HOLD
101 Backbone.js
102 Component-based frameworks
103 Handwritten CSS
104 Logic in stored procedures

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

Languages & Frameworks

Technology Radar - May 2013 - 12

Along with JavaScript and HTML, CSS is a core technology for
creating websites. Unfortunately, the language itself lacks key
features, which leads to a high level of duplication and a lack
of meaningful abstractions. While CSS3 aims to rectify some of
these issues, it will be years before the modules that make up
CSS3 will be properly supported in most browsers. Fortunately,
there is a solution today using CSS	frameworks like SASS, SCSS,
and LESS. Due to their quality and support, we believe that the
days of handwritten	CSS, for anything apart from trivial work,
are over.

CSS	frameworks simplify the development of large scale CSS
codebases without having to start from scratch each time.
Because of the abundance of frameworks, it is important to pick
one that enables continued enhancement and maintenance
of the codebase, rather than something that just helps you
get started quickly. Frameworks based on mix-ins, such as
Compass, or with a specific focus, such as Susy, are much better
suited in this regard.

Twitter	Bootstrap is a popular CSS framework which allows
you to quickly produce a good looking website with fluid and
responsive layouts. In this edition of the radar, Bootstrap
moves back from Trial to Assess based on our experiences
using it over time. If you wish to replace or extensively
customize the look and feel of your application, Bootstrap can
present a challenge due to its deep integration with HTML
markup. This doesn’t necessarily make it a bad choice but it is
worth keeping these limitations in mind when choosing it over
available alternatives.

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

References

Technology Radar - May 2013 - 13

Apache	Cordova: http://cordova.apache.org/
BigQuery: http://martinfowler.com/articles/bigQueryPOC.html
Client	Side	Error	Logging: http://openmymind.net/2012/4/4/You-Really-Should-Log-Client-Side-Error/
CoffeeScript	is	not	a	language	worth	learning: https://github.com/raganwald/homoiconic/blob/master/2011/12/jargon.md
CoffeeScript	Source	Maps: http://coffeescript.org/#source-maps
Dropbox	dives	into	CoffeeScript: https://tech.dropbox.com/2012/09/dropbox-dives-into-coffeescript/
DropWizard: http://dropwizard.codahale.com/
Faraday: https://github.com/lostisland/faraday
Graylog2: http://graylog2.org/
Hosted	Chef: http://www.opscode.com/hosted-chef/
JavaScript	error	reporting: http://devblog.pipelinedeals.com/pipelinedeals-dev-blog/2012/2/12/javascript-error-reporting-for-fun-and-profit-1.html
Logstash: http://logstash.net/
Mobile	phone	Usage: http://www.idc.com/getdoc.jsp?containerId=prUS23982813#.UTTAZzCG2TU
MongoDB: http://www.mongodb.org/
Nancy	Framework: http://nancyfx.org/
NPM: https://npmjs.org/
NPM: https://npmjs.org/doc/json.html
Octopus: http://octopusdeploy.com/
OWIN: owin.org
PhantomJS: http://phantomjs.org/
PhoneGap: http://phonegap.com/
Plans: https://github.com/plans
Reactive	Extension: https://rx.codeplex.com/
RequireJS: http://requirejs.org/
SnapCI: https://snap-ci.com/
Snowflake	servers: http://martinfowler.com/bliki/SnowflakeServer.html
Source	Map	Revision	3	Proposal: https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit
UIAutomator: http://developer.android.com/tools/help/uiautomator/index.html
USSD: http://en.wikipedia.org/wiki/Unstructured_Supplementary_Service_Data
Vumi: http://vumi.org/
Why	Everyone	Either	Hates	or	Leaves	Maven: http://nealford.com/memeagora/2013/01/22/why_everyone_eventually_hates_maven.html

ThoughtWorks is a global IT consultancy
ThoughtWorks – a software company and community of passionate individuals whose purpose is to revolutionize software creation and
delivery, while advocating for positive social change. Our product division, ThoughtWorks Studios, makes pioneering tools for software teams
who aspire to be great; such as Mingle®, Go™ and Twist® which help organizations better collaborate and deliver quality software. Our clients
are people and organizations with ambitious missions; we deliver disruptive thinking and technology to empower them to succeed. In our
20th year, approximately 2500 ThoughtWorks employees – ‘ThoughtWorkers’ – serve our clients from offices in Australia, Brazil, Canada,
China, Germany, India, Singapore, South Africa, Uganda, the U.K. and the U.S.

© May 2013, ThoughtWorks, Inc. All Rights Reserved.

