
Mark Richards & Neal Ford

Fundamentals of
Software
 Architecture
An Engineering Approach

Free
Chapter

This excerpt contains Chapter 1 of the book Fundamentals of
Software Architecture. The complete book will be available on

the O’Reilly Online Learning Platform and through other
retailers in February 2020.

Mark Richards and Neal Ford

Fundamentals of Software
Architecture

An Engineering Approach

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04345-4

Fundamentals of Software Architecture
by Mark Richards and Neal Ford

Copyright © 2020 Neal Ford, Mark Richards. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Chris Guzikowski
Development Editors: Alicia Young and Virginia
Wilson
Production Editor: Christopher Faucher

Copyeditor: Sonia Saruba
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2020: First Edition

Revision History for the First Edition
2020-01-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492043454 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Software Architecture,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492043454

Table of Contents

1. Introduction. 1
Defining Software Architecture 3
Expectations of an Architect 7

Make Architecture Decisions 7
Continually Analyze the Architecture 8
Keep Current With Latest Trends 8
Ensure Compliance With Decisions 9
Diverse Exposure and Experience 9
Have Business Domain Knowledge 10
Possess Interpersonal Skills 10
Understand and Navigate Politics 11

Intersection of Architecture and … 12
Engineering Practices 13
Operations/DevOps 16
Process 17
Data 18

Laws of Software Architecture 18

iii

CHAPTER 1

Introduction

The job software architect appears near the top of numerous “best jobs” lists across
the world. Yet, when readers look at the other jobs on those lists (like nurse practi‐
tioner or finance manager), a clear career path exists from not being one of those
things to becoming one. Why is this path absent for software architects?

First, the industry doesn’t have a good definition of software architecture itself. When
we teach foundational classes, we have often been asked for a concise, succinct defini‐
tion of what a software architect does, and we have adamantly refused. And we’re not
the only ones. In his famous white paper Who Needs an Architect?, Martin Fowler
famously refused to try to define it, instead falling back on the famous quote:

Architecture is about the important stuff…whatever that is.
—Ralph Johnson

When pressed, we created the mindmap shown Figure 1-1, which is woefully incom‐
plete but indicative of the scope of software architecture.

1

https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf:

Figure 1-1. MindMap showing an incomplete picture of the responsibilities of a software
architect.

We will in fact offer our definition of software architecture shortly.

Second, as illustrated by Figure 1-1, the role of software architect embodies a massive
amount and scope of responsibility that continues to expand. A decade ago, software
architects dealt only with the purely technical aspects of architecture, like modularity,
components, and patterns. However, because of new architectural styles that leverage
a wider swath of capabilities (like microservices), the role of software architect has
expanded. We cover the many intersections of architecture and the remainder of the
organization in the upcoming section “Intersection of Architecture and …” on page
12.

Third, software architecture is a constantly moving target because of the rapidly
evolving software development ecosystem. Any definition cast today will be hope‐
lessly outdated in a few years. The WikiPedia definition of software architecture pro‐
vides a reasonable overview, but many statements are outdated (such as “Software
architecture is about making fundamental structural choices which are costly to
change once implemented.” Yet, architects designed modern architectural styles like
microservices with the idea of incremental built in—it is no longer expensive to make
structural changes in microservices. Of course, that capability means tradeoffs with
other concerns, such as coupling. Many books on software architecture treat it as a
static problem; once solved, we can safely ignore it. However, we recognize the inher‐
ent dynamic nature of software architecture, including the definition itself, through‐
out the book.

2 | Chapter 1: Introduction

https://en.wikipedia.org/wiki/Software_architecture:

Fourth, much of the material extant about software architecture has only historical
relevance. Readers of the Wikipedia page won’t fail to notice the bewildering array of
acronyms and cross references to an entire universe of knowledge, with the typical
WikiPedia lack of consistent level of exposition. Yet, many of these acronyms repre‐
sent outdated or failed attempts. Even solutions that were perfectly valid a few years
ago cannot work not because the context has changed. The history of software archi‐
tecture is littered with things architects tried, only to realize damaging side effects.
We cover many of those lessons in this book.

Why a book on software architecture fundamentals now? The scope of software
architecture isn’t the only part of the development world that constantly changes.
New technologies, techniques, capabilities…in fact, it’s easier to find things that
haven’t changed over the last decade than list all the changes. Software architects
must make decisions against this constantly changing ecosystem. Because everything
changes, including foundations upon which we make decisions, architects should
reexamine some core axioms that informed earlier writing about software architec‐
ture. For example, earlier books about software architecture don’t consider the impact
of DevOps because it didn’t exist when the book was written.

When studying architecture, readers must keep in mind that, like much art, it can
only be understood in context. Many of the decisions architects made were based on
realities of the environment they found themselves in. For example, one of the major
goals of late 20th century architecture included making most efficient use of shared
resources, because all the infrastructure at the time was expensive and commercial:
operating systems application servers, database servers, etc. Imagine strolling into a
2002 data center and telling the head of operations “Hey, I have a great idea for a rev‐
olutionary style of architect, where each service runs on its own isolated machinery,
with its own dedicated database (describing what we now know as microservices). So,
that means I’ll need 50 licenses for Windows, another 30 application server licenses,
and at least 50 database server licenses.” In 2002, trying to build an architecture like
microservices would be inconceivably expensive. Yet, with the advent of open source
during the intervening years, coupled with updated engineering practices via the
DevOps revolution, we can reasonably build an architecture as described. Readers
should keep in mind that all architectures are a product of their context.

Defining Software Architecture
The industry as a whole has struggled to precisely define “software architecture”.
Some architects refer to software architecture as the blueprint of the system, while
others define it as the roadmap for developing a system. The issue with these com‐
mon definitions is understanding what the blueprint or roadmap actually contains.
For example, what is analyzed when an architect analyzes an architecture?

Defining Software Architecture | 3

Figure 1-2 illustrates a way to think about software architecture. In this definition,
software architecture consists of the structure of the system (denoted as the heavy
black lines supporting the architecture), combined with architecture characteristics (“-
ilities”) the system must support, architecture decisions, and finally design principles.

Figure 1-2. Architecture consists of the structure combined with architecture characteris‐
tics (“-ilities”), architecture decisions, and design principles.

The structure of the system, as illustrated in Figure 1-3, refers to the type of architec‐
ture style (or styles) the system is implement in (such as microservices, layered,
microkernel, and so on). Describing an architecture solely by the structure does not
wholly elucidate an architecture. For example, suppose an architect is asked to
describe an architecture and that architect responds “it’s a microservices architecture”.
Here, the architect is only talking about the structure of the system, but not the archi‐
tecture of the system. Knowledge of the architecture characteristics, architecture deci‐
sions, and design principles are also needed to fully understand the architecture of
the system.

4 | Chapter 1: Introduction

Figure 1-3. Structure refers to the type of architecture styles used in the system.

Architecture characteristics is another dimension of defining software architecture
(see Figure 1-4). The architecture characteristics define the success criteria of a sys‐
tem, which is generally orthogonal to the functionality of the system. Notice in
Figure 1-4 that all of the characteristics listed do not require knowledge of the func‐
tionality of the system, yet they are required in order for the system to function prop‐
erly. Architecture characteristics are so important that we’ve devoted several chapters
in this book to understanding and defining them.

Figure 1-4. Architecture characteristics refers to the “-ilities” that the system must sup‐
port

Defining Software Architecture | 5

The next factor that defines software architecture is architecture decisions. Architec‐
ture decisions define the “rules” for how a system should be constructed. For exam‐
ple, an architect might make an architecture decision that only the business and
services layer within a layered architecture may access the database (see Figure 1-5),
therefore restricting the presentation layer from making direct database calls. Archi‐
tecture decisions form the constraints of the system, and direct the development
teams on what is and what isn’t allowed.

Figure 1-5. Architecture decisions are rules for constructing systems.

If a particular architecture decision cannot be implemented in one part of the system
due to some condition or other constraint, that decision (or rule) can be “broken”
through something called a variance. Most organizations have variance models that
are used by an architecture review board (ARB) or chief architect that formalize the
process for seeking a variance to a particular standard or architecture decision. An
exception to a particular architecture decision is analyzed by the ARB (or chief archi‐
tect if no ARB exists) and is either approved or denied based on justifications and
tradeoffs.

The last factor in the definition of architecture is design principles. A design principle
differs from an architecture decision in that a design principle is a guideline rather
than a hard-and-fast rule. For example, the design principle as illustrated in
Figure 1-6 states that the development teams should leverage asynchronous messag‐
ing between services within a microservices architecture to increase performance. An
architecture decision (rule) could never cover every condition and option for com‐
munication between services in an architecture decision, so a design principle can be
used to provide guidance for the preferred method (in this case asynchronous mes‐

6 | Chapter 1: Introduction

saging) to allow the developer to choose a more appropriate communication protocol
(such as REST or gRPC) given a specific circumstance.

Figure 1-6. Design principles are guidelines for constructing systems.

Expectations of an Architect
Defining the role of a software architect presents as much difficultly as defining soft‐
ware architecture. It can range from expert programmer up to defining the strategic
technical direction for the company. Rather than waste time on the fool’s errand of
defining the role of a software architect, we recommend focusing on the expectations
of an architect.

There are eight core expectations placed on a software architect, irrespective of any
given role, title, or job description (e.g., application architect, solution architect, net‐
work architect, data architect, integration architect, and so on). The first key to effec‐
tiveness and success in the software architect role depends on understanding and
practicing each of these expectations.

Make Architecture Decisions
An architect is expected to define the architecture decisions and design principles used to
guide technology decisions within the team, the department, or across the enterprise

Guide is the key operative word in this first expectation. An architect should guide
rather than specify technology choices. For example, an architect might make a deci‐
sion to use React.js for front-end development. In this case, the architect is making a
technical decision rather than an architectural decision or design principle that will
help guide development teams choices. An architect should instead instruct develop‐

Expectations of an Architect | 7

ment teams to use a reactive-based framework for front-end web development, hence
guiding the development team in making the choice between Angular, Elm, React.js,
Vue, or any of the other host of reactive-based web frameworks.

Guiding technology choices through architecture decisions and design principles is
difficult. The key to making effective architectural decisions is asking whether the
architecture decision is helping to guide teams in making the right technical choice or
whether the architecture decision makes the technical choice for them. That said, an
architect on occasion might need to make specific technology decisions in order to
preserve a particular architectural characteristic such as scalability, performance,
availability, and so on. In this case it would be still considered an architectural deci‐
sion, even though it specifies a particular technology. Architects often struggle find‐
ing the correct line, so we devote an entire chapter to architecture decisions (see
Chapter 19).

Continually Analyze the Architecture
An architect is expected to continually analyze the architecture and current technology
environment, and recommend solutions for improvement.

This expectation of an architect refers to architecture vitality, which assesses how via‐
ble the architecture that was defined three or more years ago is today given changes
in both business and technology. In our experience, not enough architects focus their
energies on continually analyzing existing architectures. As a result, most architec‐
tures experience elements of structural decay, which occurs when developers make
coding or design changes that impact the required architectural characteristics such
as performance, availability, scalability, and so on.

Another easily forgotten aspect of the analysis expectation is the inclusion of the test‐
ing and release environments into projects. Agility for code modification code has
obvious benefits, but if it takes teams weeks to test changes and months for releases,
then architects cannot achieve agility in the overall architecture.

An architect must holistically analyze changes in technology and problem domain to
determine the soundness of the architecture. While this kind of consideration rarely
appears in a job posting, architects must meet this expectation to keep applications
relevant.

Keep Current With Latest Trends
An architect is expected to keep current with the latest technology and industry trends.

Developers must keep up to date in the latest technologies they use on a daily basis
remain relevant (and to also retain a job!). However, an architect has an even more
critical requirement to keep current on the latest technical and industry trends. The
decisions an architect makes tend to be long lasting and generally difficult to change.

8 | Chapter 1: Introduction

Understanding and following key trends helps the architect prepare for the future
and also helps the architect make the correct decision.

Tracking trends and keeping current with those trends is hard, particularly for a soft‐
ware architect. We discuss various techniques and resources on how to keep current
with the latest trends in Chapter 24 of the book.

Ensure Compliance With Decisions
An architect is expected to ensure compliance with architecture decisions and design
principles.

Ensuring compliance means that the architect is continually verifying that develop‐
ment teams are following the architecture decisions and design principles defined,
documented, and communicated by the architect. Consider the scenario where an
architect makes a decision to restrict access to the database in a layered architecture
to only the business and services layers (and not the presentation layer). This means
that the presentation layer must go through all layers of the architecture to make even
the simplest of database calls. A user interface developer might disagree with this
decision and access the database (or the persistence layer) directly for performance
reasons. However, the architect made that architecture decision for a specific reason -
to control change. By closing the layers, database changes can be made without
impacting the presentation layer. By not ensuring compliance with architecture deci‐
sions, violations like this can occur and the architecture will not meet the required
architectural characteristics (“-ilities”) and hence the application or system will not
work as expected.

We talk more about measuring compliance using automated fitness functions and
automated tools in Chapter 6.

Diverse Exposure and Experience
An architect is expected to have exposure to multiple and diverse technologies, frame‐
works, platforms, and environments.

This expectation does not mean an architect must be an expert in every framework,
platform, and language, but rather that an architect must at least be familiar with a
variety of varying technologies. Most environments these days are heterogeneous,
and at a minimum an architect should know how to interface with multiple systems
and services, irrespective of the language, platform, and technology those systems or
services are written in.

One of the best ways of mastering this expectation is for the architect to stretch her
comfort zone. Focusing only on a single technology or platform is a safe haven. An
effective software architect should be aggressive in seeking out opportunities to
stretch that comfort zone and gain experience in multiple languages, platforms, and

Expectations of an Architect | 9

technologies. A good way of mastering this expectation is to focus on technical
breadth rather than technical depth. Technical breadth includes the stuff you know
about, but not at a detailed level, combined with the stuff you know a lot about. For
example, it is far more valuable for an architect to be familiar with ten different cach‐
ing products and the associated pros and cons of each rather than to be an expert in
only one of them.

Have Business Domain Knowledge
An architect is expected to have a certain level of business domain expertise.

Effective software architects understand not only technology but also the business
domain of a problem space. Without business domain knowledge, it is difficult to
understand the business problem, goals, and requirements, making it difficult to
design an effective architecture to meet the requirements of the business. Imagine
being an architect at a large financial institution and not understanding common
financial terms such as an average directional index, aleatory contracts, rates rally, or
even non-priority debt. Without this knowledge an architect cannot communicate
with stakeholders and business users, and will quickly lose credibility.

The most successful architects we know are those who have broad hands-on technical
knowledge coupled with a strong knowledge of a particular domain. These software
architects are able to effectively communicate with C-level executives and business
users using the domain knowledge and language that these stakeholders know and
understand. This in turn creates a strong level of confidence that the software archi‐
tect knows what they are doing and is competent to create an effective and correct
architecture. Knowing the business domain allows the software architect to better
understand problems, issues, goals, data, and business processes, all of which are key
factors when designing an effective software architecture.

Possess Interpersonal Skills
An architect is expected to possess exceptional interpersonal skills, including teamwork,
facilitation, and team leadership.

Having exceptional leadership and interpersonal skills is a difficult expectation for
most developers and architects. As technologists, developers and architects like to
solve technical problems, not people problems. However, as Gerald Weinberg is
famous for saying, “no matter what they tell you, its always a people problem”. An
architect is not only expected to provide technical guidance on the team, but also
expected to lead the development teams through the implementation of the architec‐
ture. Leadership skills are at least half what it takes to become effective software
architect, regardless of the role or title the architect has.

10 | Chapter 1: Introduction

https://en.wikiquote.org/wiki/Gerald_Weinberg:

The industry is flooded with software architects, all competing for a limited number
of architecture positions. Having strong leadership and interpersonal skills is a good
way for an architect to differentiate themselves from other architects and stand out
from the crowd. We’ve known many software architects who are excellent technolo‐
gists, but ineffective architects due to the inability to lead teams, coach and mentor
developers, and effectively communicate ideas and architecture decisions and princi‐
ples. Needless to say, those architects had difficulties holding a position or job. Lead‐
ership and negotiation skills are so important that we’ve dedicated an entire chapter
to the book on the software architect as a leader (see Chapter 23).

Understand and Navigate Politics
An architect is expected to understand the political climate of the enterprise and be able
to navigate the politics.

It might seem rather strange talk about negotiation and navigating office politics in a
book about software architecture. To illustrate how important and necessary negotia‐
tion skills are, consider the scenario where a developer makes the decision to leverage
the Strategy Pattern to reduce the overall cyclomatic complexity of a particular piece
of complex code. Who really cares? One might applaud the developer for using such a
pattern, but in almost all cases the developer does not need to seek approval for such
a decision. Now consider the scenario where an architect, responsible for a large cus‐
tomer relationship management system, is having issues controlling database access
from other systems, securing certain customer data, and making any database schema
change because too many other systems are using the CRM database. The architect
therefore makes the decision to create what are called application silos, whereas each
application database is only accessible from the application owning that database.
Making this decision will give the architect better control over the customer data,
security, and also change control. However, unlike the previous developer scenario,
this decision will also be challenged by almost everyone in the company (with the
possible exception of the CRM application team of course). In effect this is perhaps a
million dollar decision. Other applications need the customer management data. If
those applications are no longer able to access the database directly, they must now
ask the CRM system for the data, requiring remote access calls through either REST,
SOAP, or some other remote access protocol.

The main point is that almost every decision an architect makes will be challenged.
Architectural decisions will be challenged by product owners, project managers, and
business stakeholders due to increased costs or increased effort (time) involved.
Architectural decisions will also be challenged by developers who feel their approach
is better. In either case, the architect must navigate the politics of the company and
apply basic negotiation skills to get most decisions approved. This fact can be very
frustrating to a software architect, because most decisions made as a developer did
not require approval or even a review. Programming aspects such as code structure,

Expectations of an Architect | 11

https://en.wikipedia.org/wiki/Strategy_pattern:

class design, design pattern selection, and sometimes even language choice are all
part of the art of programming. However, an architect, now able to finally be able to
make broad and important decisions, must justify and fight for almost every one of
those decisions. Negotiation skills are so critical and necessary that, like leadership
skills, we’ve dedicated an entire chapter in the book to understanding them (see
Chapter 23).

Intersection of Architecture and …
The scope of software architecture has grown over the last decade to encompass more
and more responsibility and perspective. A decade ago, the typical relationship
between architecture and operations was contractual and formal, with lots of
bureaucracy. Most companies, trying to avoid the complexity of hosting their own
operations, frequently outsourced operations to a third-party company, with contrac‐
tual obligations for service level agreements such as uptime, scale, responsiveness,
and a host of other important architectural characteristics. However, tectonic shifts in
recent years include architectures such as microservices that freely leverage former
solely operational concerns. In the past, a firm and artificial barrier existed between
operations and architecture, leading to overly complex solutions to problems. For
example, elastic scale was once painfully built into architectures (see Chapter 15)
while microservices handle it less painfully via a liaison between architects and
DevOps.

History: Pets.com and Why We Have Elastic Scale
The history of software development contains rich lessons, both good and bad. We
assume that current capabilities (like elastic scale) just appeared one day because of
some clever developer, but those ideas were often born of hard lessons. Pets.com rep‐
resents an early example of hard lessons learned. They appeared in the early day so of
the Internet, hoping to become the Amazon.com of pet supplies. Fortunately, they had
a brilliant marketing department, which invented a compelling mascot: a sock puppet
with a microphone that said irreverent things. The mascot became a super star,
appearing in public at parades, national sporting events, and anywhere else that
defines saturation.

Unfortunately, management at Pets.com apparently spent all their money on the mas‐
cot, not on infrastructure. Once orders started pouring in, they weren’t prepared. The
web site was slow, transactions were lost, deliveries delayed, and so on…pretty much
the worse case scenario. So bad, in fact, that they closed the business shortly after
their disastrous Christmas rush, selling the only remaining valuable asset (the mas‐
cot) to a competitor.

What they needed was elastic scale: the ability to spin up more instances of resources
as needed. Cloud providers offer this feature as a commodity, but in the early days of

12 | Chapter 1: Introduction

the Internet, companies had to manage their own infrastructure, and many compa‐
nies fell victim to a previously unheard of phenomenon: too much success can kill the
business. Pets.com and other similar horror stories lead engineers to develop the
frameworks that architects enjoy now.

The following sections delve into some of the newer intersections of the role of archi‐
tect and other parts of the organization, highlighting new capabilities and responsi‐
bilities for architects.

Engineering Practices
Traditionally, software architecture was separate from the development process used
to create software. Dozens of popular methodologies exist to build software, includ‐
ing Waterfall, many flavors of agile (such as Scrum, eXtreme Programming, Lean,
Crystal, and others), which mostly don’t impact software architecture.

However, over the last few years, engineering advances have thrust process concerns
upon software architecture. It is useful to separate software development process from
engineering practices. By process, we mean how teams are formed and managed, how
meetings are conducted, and workflow organization; it refers to the mechanics of
how people organize and interact. Software engineering practices, on the other hand,
refer to process-agnostic practices that have illustrated repeatable benefit. For exam‐
ple, continuous integration is a proven engineering practice that doesn’t rely on a par‐
ticular process.

The Path from eXtreme Programming to Continuous Delivery
The origins of eXtreme Programming nicely illustrate the difference between process
and engineering. In the early 1990’s, a group of experienced software developers, led
by Kent Beck, started questioning the dozens of different development processes pop‐
ular at the time. In their experience, it seemed that none of them created repeatably
good outcomes. One of the XP founders said that choosing one of the extant pro‐
cesses was “no more guarantee of project success than flipping a coin.” They decided
to rethink how to build software, and started the XP project in March of 1996. To
inform their process, they rejected the conventional wisdom and focused on the prac‐
tices that lead to project success in the past, pushed to the extreme. Their reasoning
follows: we have seen a correlation on previous projects between more tests and
higher quality. Thus, the XP approach to testing took the practice to the extreme: do
test-first development, ensuring that all code is tested before it enters the codebase.

XP was lumped into other popular agile processes that shared similar perspectives,
but it was one of the few methodologies that included engineering practices such as
automation, testing, continuous integration, and other concrete, experienced-based
techniques. The efforts to continue advancing the engineering side of software devel‐

Intersection of Architecture and … | 13

http://www.extremeprogramming.org/

opment continued with the Continuous Delivery book (an updated version of many
XP practices) and saw fruition in the DevOps movement. In many ways, the DevOps
revolution occurred when operations adopted many of the engineering practices orig‐
inally espoused by XP: automation, testing, declarative single-sources of truth, and
many others.

We strongly support these advances, which form the incremental steps that will even‐
tually graduate software development into a proper engineering discipline.

Focusing on engineering practices is important. First, software development lacks
many of the features of more mature engineering disciplines. For example, civil engi‐
neers can predict structural change with much more accuracy than similarly impor‐
tant aspects of software structure. Second, one of the Achilles heal’s of software
development is estimation—how much time, how many resources, how much
money? Part of this difficulty lies with antiquated accounting practices that cannot
accommodate the exploratory nature of software development, but another part is
because we’re traditionally bad at estimation, at least in part because of unknown
unknowns.

…because as we know, there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns – the ones we don’t know we
don’t know.

—former United States Secretary of Defense Donald Rumsfeld

Unknown unknowns are the nemesis of software systems. Many projects start with a
list of known unknowns: things developers must learn about the domain and technol‐
ogy they know is upcoming. However, projects also fall victim to unknown unknowns:
things no one knew was going to crop up yet has appeared unexpectedly. This is why
all Big Design Up Front software efforts suffer—architects cannot design for
unknown unknowns.

All architectures become iterative because of unknown unknowns, agile just recognizes
this and does it sooner.

—Mark Richards

Thus, while process is mostly separate from architecture, an iterative process fits the
nature of software architecture better. Teams trying to build a modern system such as
microservices using an antiquated process like Waterfall will find a great deal of fric‐
tion from an antiquated process that ignores the reality of how software comes
together.

Often, the architect is also the technical leader on projects and therefore determines
the engineering practices the team uses. Just as architects must carefully consider the
problem domain before choosing an architecture, they must also ensure that the

14 | Chapter 1: Introduction

architectural style and engineering practices form a symbiotic mesh. For example, a
microservices architecture assumes automated machine provisioning, automated
testing and deployment, and a raft of other assumptions. Trying to build one of these
architectures with an antiquated operations group, with manual processes and little
testing, creates tremendous friction and challenges to success. Just as different prob‐
lem domains lend themselves towards certain architectural styles, engineering practi‐
ces have the same kind of symbiotic relationship.

The evolution of thought leading from eXtreme Programming to Continuous Deliv‐
ery continues. Recent advances in engineering practices allow new capabilities within
architecture. Neal’s most recent book, Building Evolutionary Architectures, highlights
new ways to think about the intersection of engineering practices and architecture,
allowing better automation of architectural governance. While we won’t summarize
that book here, it gives an important new nomenclature and way of thinking about
architectural characteristics that will infuse much of the remainder of this book.

The book covers techniques for building architectures that change gracefully over
time. In Chapter 4, we described architecture as the combination of requirements and
additional concerns, as illustrated in Figure 1-7.

Figure 1-7. The architecture for a software system consists of both requirements and all
the other architectural characteristics.

As any experience in the software development world illustrates, nothing remains
static. Thus, architects may design a system to meet certain criteria, but that design
must survive both implementation (how can architects make sure that their design is
implemented correctly) and the inevitable change driven by the software develop‐
ment ecosystem. What we need is an evolutionary architecture.

The book Building Evolutionary Architectures introduces the concept of using fitness
functions to protect (and govern) architectural characteristics as change occurs over

Intersection of Architecture and … | 15

http://shop.oreilly.com/product/0636920080237.do

time. The concept of fitness function comes from evolutionary computing. When
designing a genetic algorithm, developers have a variety of techniques to mutate the
solution, evolving new solutions iteratively. When designing such an algorithm for a
specific goal, developers must measure the outcome to see if it is closer or further
away from an optimal solution; that measure is called a fitness function. A fitness
function is an objective measure of how close a given solution is to the desired goal.
For example, if developers designed a genetic algorithm to solve the traveling sales‐
person problem (whose goal is the shortest route between various cities), the fitness
function would look at the path length.

Building Evolutionary Architectures co-opts this idea to create architectural fitness
functions: an objective integrity assessment of some architectural characteristic(s).
This may include a variety of mechanisms: metrics, unit tests, monitors, chaos engi‐
neering, and so on. For example, an architect may identify page load time as an
importance characteristic of the architecture. To allow the system to change without
degrading performance, the architecture builds a fitness function as a test that meas‐
ures page load time for each page, and runs the test as part of the continuous integra‐
tion for the project. Thus, architects always know the status of critical parts of the
architecture because they have a verification mechanism in the form of fitness func‐
tions for each part.

We won’t go into the full details of fitness functions here. However, we will point out
opportunities and examples of the approach where applicable. However, note the cor‐
relation between how often fitness functions execute and the feedback they provide.
Thus, adopting agile engineering practices such as continuous integration, automated
machine provisioning, and similar practices make building resilient architectures eas‐
ier. It also illustrates how intertwined architecture has become with engineering prac‐
tices.

Operations/DevOps
The most obvious recent intersection between architecture and related fields recently
occurred with the advent of DevOps, driven by some rethinking of architectural axi‐
oms. For many years, many companies considered operations as a separate function
from software development; they often outsource operations to another company as a
cost-savings measure. Many architectures designed during the 1990s and 2000’s
assumed that architects couldn’t control operations, and built architectures defen‐
sively around that restriction (for a good example of this, see Space-based Architec‐
ture in Chapter 15).

However, a few years ago, several companies started experimenting with new forms of
architecture that combine many operational concerns with architecture. For example,
in older-style architectures such as ESB-driven SOA, the architecture was designed to
handle things like elastic scale, greatly complicating the architecture in the process.

16 | Chapter 1: Introduction

Basically, architects were forced to defensively design around the limitations intro‐
duced because of the cost-savings measure of outsourcing operations. Thus, they
built architects that could handle scale, performance, elasticity, and a host of other
capabilities internally. The side effect of that design is vastly more complex architec‐
ture.

The builders of the microservices style of architecture realized that these operational
concerns are better handled by operations. By creating a liaison between architecture
and operations, the architects can simplify the design and rely on operations for the
things they handle best. Thus, by realizing a misappropriation of resources led to
accidental complexity, architects and operations teamed up to create microservices,
the details of which we cover in Chapter 17.

Process
Software architecture is mostly orthogonal to the software development process; the
way that you build software (process) has little impact on the software architecture
(structure). Thus, while the software development process a team uses has some
impact on software architecture (especially around engineering practices), they are
mostly separate. Most books on software architecture ignore the software develop‐
ment process outside making specious assumptions about things like predictability.
However, the process by which teams develop software has an impact on many facets
of software architecture. For example, many companies over the last few decades have
adopted agile development methodologies discussed above because of the nature of
software. Architects in agile projects can assume iterative development and therefore
a faster feedback loop for decisions. That in turn leads to the ability for architects to
be more aggressive about experimentation and other knowledge that relies on feed‐
back.

As Mark noted in a previous section, all architecture becomes iterative; it’s only a
matter of time. Towards that end, we’re going assume a baseline of agile methodolo‐
gies throughout and call out exceptions where appropriate. For example, it is still
common for many monolithic architectures to use older processes because of their
age, politics, or other mitigating factors unrelated to software.

One critical aspect of architecture where agile methodologies shine: restructuring.
Teams often find that they need to migrate their architecture from one pattern to
another. For example, the team started with a monolithic architecture because it was
easy and fast to bootstrap, but now they need to move it to a more modern architec‐
ture. Agile methodologies support these kinds of changes better than planning-heavy
processes because of the tight feedback loop and encouragement of techniques like
the Strangler Pattern and feature toggles.

Intersection of Architecture and … | 17

https://www.martinfowler.com/bliki/StranglerApplication.html
https://trunkbaseddevelopment.com/

Data
A large percentage of serious application development includes external data storage,
often in the form of a relational (or, increasingly, NoSQL) database. However, many
books about software architecture include light treatment of this important aspect of
architecture. Code and data have a symbiotic relationship: one isn’t useful without the
other.

Database administrators often work alongside architects to build data architecture for
complex systems, analyzing how relationships and reuse will affect a portfolio of
applications. We won’t delve into that level of specialized detail in this book, but
rather save that detailed discussion for our next book, Architecture The Hard Parts.
However, we also don’t ignore the existence and dependence on external storage. In
particular, when we talk about the operational aspects of architecture and architec‐
tural quantum (see Chapter 3), we include important external concerns such as data‐
bases.

Laws of Software Architecture
While the scope of software architecture is almost impossibly broad, unifying ele‐
ments do exist. The authors have first and foremost learned the first law by constantly
stumbling across it:

Everything in software architecture is a tradeoff.
—1st Law of Software Architecture

Nothing exists on a nice clean spectrum for software architects—every decision must
take into account many opposing factors.

If an architect thinks they have discovered something that isn’t a tradeoff, more likely
they just haven’t identified the tradeoff yet.

—Corollary 1

18 | Chapter 1: Introduction

About the Authors
Mark Richards is an experienced hands-on software architect involved in the archi‐
tecture, design, and implementation of microservices architectures, service oriented
architectures, and distributed systems in J2EE and other technologies.

Neal Ford is Director, Software Architect, and Meme Wrangler at ThoughtWorks, a
global IT consultancy with an exclusive focus on end-to-end software development
and delivery. Before joining ThoughtWorks, Neal was the Chief Technology Officer at
The DSW Group, Ltd., a nationally recognized training and development firm.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Defining Software Architecture
	Expectations of an Architect
	Make Architecture Decisions
	Continually Analyze the Architecture
	Keep Current With Latest Trends
	Ensure Compliance With Decisions
	Diverse Exposure and Experience
	Have Business Domain Knowledge
	Possess Interpersonal Skills
	Understand and Navigate Politics

	Intersection of Architecture and …
	Engineering Practices
	Operations/DevOps
	Process
	Data

	Laws of Software Architecture

	About the Authors

