
© Thoughtworks, Inc. All Rights Reserved. 1

An opinionated guide
to technology frontiers

Volume 28

Technology
Radar

https://thght.works/41VUYJa

© Thoughtworks, Inc. All Rights Reserved. 2

About the Radar 3

Radar at a glance 4

Contributors 5

Themes 6

The Radar 8

Techniques 11

Platforms 20

Tools 27

Languages and Frameworks 38

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Thoughtworks Technology Radar

About the
Radar
Thoughtworkers are passionate about
technology. We build it, research it, test it,
open source it, write about it and constantly
aim to improve it — for everyone. Our
mission is to champion software excellence
and revolutionize IT. We create and share
the Thoughtworks Technology Radar in
support of that mission. The Thoughtworks
Technology Advisory Board, a group of senior
technology leaders at Thoughtworks, creates
the Radar. They meet regularly to discuss the
global technology strategy for Thoughtworks
and the technology trends that significantly
impact our industry.

The Radar captures the output of the
Technology Advisory Board’s discussions in a
format that provides value to a wide range of
stakeholders, from developers to CTOs. The
content is intended as a concise summary.

We encourage you to explore these
technologies. The Radar is graphical in
nature, grouping items into techniques, tools,
platforms and languages and frameworks.
When Radar items could appear in multiple
quadrants, we chose the one that seemed
most appropriate. We further group these
items in four rings to reflect our current
position on them.

For more background on the Radar,
see thoughtworks.com/radar/faq.

https://thght.works/3kT4Vq7

© Thoughtworks, Inc. All Rights Reserved. 4

Thoughtworks Technology Radar

Our Radar is forward-looking. To make room for new items, we fade items that haven’t moved
recently, which isn’t a reflection on their value but rather on our limited Radar real estate.

Hold Assess Trial Adopt

Adopt: We feel strongly that the industry
should be adopting these items. We use
them when appropriate in our projects.

Trial: Worth pursuing. It’s important to
understand how to build up this capability.
Enterprises can try this technology on a
project that can handle the risk.

Assess: Worth exploring with the goal of
understanding how it will affect
your enterprise.

Hold: Proceed with caution.

New Moved in/out No change

Radar at a glance
The Radar is all about tracking interesting things, which we refer to as blips. We organize the blips in
the Radar using two categorizing elements: quadrants and rings. The quadrants represent different
kinds of blips. The rings indicate what stage in an adoption lifecycle we think they should be in.

A blip is a technology or technique that plays a role in software development. Blips are “in motion” —
that is, we find their position in the Radar is changing — usually indicating that we’re finding increasing
confidence in them as they move through the rings.

© Thoughtworks, Inc. All Rights Reserved. 5

Contributors
The Technology Advisory Board (TAB) is a group of 21 senior technologists at Thoughtworks.
The TAB meets twice a year face-to-face and biweekly virtually. Its primary role is to be an
advisory group for Thoughtworks CTO, Rebecca Parsons.

The TAB acts as a broad body that can look at topics that affect technology and technologists
at Thoughtworks. This edition of the Thoughtworks Technology Radar is based on a meeting
of the TAB remotely in March 2023.

Rebecca
Parsons (CTO)

Camilla
Falconi Crispim

James Lewis

Scott Shaw

Martin Fowler
(Chief Scientist)

Erik Dörnenburg Marisa Hoenig

Selvakumar
Natesan

Shangqi Liu Sofia Tania Vanya Seth

Bharani
Subramaniam

Fausto
de la Torre

Mike MasonMaya Ormaza

Birgitta Böckeler

Hao Xu

Neal Ford Pawan Shah

Brandon Byars

Ian Cartwright

https://www.thoughtworks.com/profiles/leaders/rebecca-parsons
https://www.thoughtworks.com/profiles/leaders/rebecca-parsons
https://www.thoughtworks.com/profiles/c/camilla-crispim
https://www.thoughtworks.com/profiles/c/camilla-crispim
https://www.thoughtworks.com/profiles/j/james-lewis
https://www.thoughtworks.com/profiles/s/scott-shaw
https://www.thoughtworks.com/profiles/leaders/martin-fowler
https://www.thoughtworks.com/profiles/leaders/martin-fowler
https://www.thoughtworks.com/profiles/e/erik-dornenburg
https://www.thoughtworks.com/profiles/m/marisa-hoenig
https://www.thoughtworks.com/profiles/s/selvakumar-natesan
https://www.thoughtworks.com/profiles/s/selvakumar-natesan
https://www.thoughtworks.com/profiles/l/liu-shangqi
https://www.thoughtworks.com/profiles/s/sofia-tania
https://www.thoughtworks.com/profiles/v/vanya-seth
https://www.thoughtworks.com/profiles/b/bharani-subramaniam
https://www.thoughtworks.com/profiles/b/bharani-subramaniam
https://www.thoughtworks.com/profiles/service-line-leads/fausto-de-la-torre
https://www.thoughtworks.com/profiles/service-line-leads/fausto-de-la-torre
https://www.thoughtworks.com/profiles/leaders/mike-mason
https://www.thoughtworks.com/profiles/m/maya-ormaza0
https://www.thoughtworks.com/profiles/b/birgitta-bockeler
https://www.thoughtworks.com/profiles/x/xu-hao
https://www.thoughtworks.com/profiles/n/neal-ford
https://www.thoughtworks.com/profiles/p/pawan-shah
https://www.thoughtworks.com/profiles/b/brandon-byars
https://www.thoughtworks.com/profiles/i/ian-cartwright

© Thoughtworks, Inc. All Rights Reserved. 6

The meteoric rise of practical AI
No, this theme text wasn’t written by ChatGPT. Artificial intelligence has been quietly bubbling away in
specialized areas for decades, and tools like GitHub Copilot have been around (and gradually seeing
adoption) for a few years. However, over the last few months, tools like ChatGPT have completely
reoriented everyone to what’s possible and made the tools widely available. Several blips in this
edition of the Radar touch on practical uses for AI for projects beyond suggesting code that requires
tweaking: AI-aided test-first development, using AI to help build analysis models, and many more.
Similar to how spreadsheets allowed accountants to stop using adding machines to recalculate
complex spreadsheets by hand, the next generation of AI will take on chores to relieve technology
workers, including developers, by replacing tedious tasks that require knowledge (but not wisdom).

However, we caution against over- or inappropriate uses. Right now, the AI models are capable of
generating a good first draft. But the generated content always needs to be monitored by a human
who can validate, moderate and use it responsibly. If these precautions are ignored, the results
can lead to reputational and security risks to organizations and users. Even some product demos
caution users, “AI-generated content can contain mistakes. Make sure it’s accurate and appropriate
before using it.”

Accessible accessibility
Accessibility has been an important consideration for organizations for many years. Recently, we’ve
highlighted the experiences of our teams with the ever-growing set of tools and techniques that
add improved accessibility to development, and several regions our teams highlighted awareness of
these techniques via awareness campaigns. We’ve featured accessibility-related blips on continuous
integration pipeline development, design playbooks, intelligent guided accessibility testing, linting and
unit testing. Growing awareness around this important topic is welcome; techniques that give more
people access to functionality in improved ways can only be a good thing.

Lambda quicksand
Serverless functions — AWS Lambdas — increasingly appear in the toolboxes of architects and
developers, and are used for a wide variety of useful tasks that realize the benefits of cloud-based
infrastructure. However, like many useful things, solutions sometimes start suitably simple but then,
from relentless gradual success, keep evolving until they reach beyond the limitations inherent in the
paradigm and sink into the sand under their own weight. While we see many successful applications
of serverless-style solutions, we also hear many cautionary tales from our projects, such as the
Lambda pinball antipattern. We also see more tools that appear to solve problems but are prone to

Themes

https://www.thoughtworks.com/radar/tools/chatgpt
https://www.thoughtworks.com/radar/tools/github-copilot
https://www.thoughtworks.com/radar/techniques/ai-aided-test-first-development
https://www.microsoft.com/en-in/security/business/ai-machine-learning/microsoft-security-copilot
https://www.thoughtworks.com/radar/techniques/accessibility-annotations-in-designs
https://www.thoughtworks.com/radar/techniques/intelligent-guided-accessibility-tests
https://www.thoughtworks.com/radar/tools/axe-linter
https://www.thoughtworks.com/radar/tools/ibm-equal-access-accessibility-checker
https://www.thoughtworks.com/radar/platforms/aws-lambda
https://www.thoughtworks.com/radar/techniques/lambda-pinball

© Thoughtworks, Inc. All Rights Reserved. 7

wide misuse. For example, tools that facilitate sharing code between Lambdas or orchestrate complex
interactions might solve a common simple problem but are then at risk of recreating some terrible
architecture antipatterns with new building blocks. If you need a tool to manage code sharing and
independent deployment across a collection of serverless functions, then perhaps it’s time to rethink
the suitability of the approach. Like all technology solutions, serverless has suitable applications but
many of its features include trade-offs that become more acute as the solution evolves.

Engineering rigor meets analytics and AI
We’ve long viewed “building in quality” as a vital aspect of developing reliable analytics and machine
learning models. Test-driven transformations, data sanity tests and data model testing strengthen
the data pipelines that power analytical systems. Model validation and quality assurance are crucial
in tackling biases and ensuring ethical ML systems with equitable outcomes. By integrating these
practices, businesses become better positioned to leverage AI and machine learning and forge
responsible, data-driven solutions that cater to a diverse user base. The corresponding tooling
ecosystem has continued to grow and mature. For example, Soda Core, a data quality tool, allows
the validation of data as it arrives in the system and automated monitoring checks for anomalies.
Deepchecks allows for the intersection of continuous integration and model validation, an important
step in incorporating good engineering practices in analytics settings. Giskard allows for quality
assurance for AI models, allowing designers to detect bias and other negative facets of models, which
aligns with our encouragement to tread ethical waters carefully when developing solutions with AI. We
view these maturing tools as further evidence of the mainstreaming of analytics and machine learning
and its integration with good engineering practices.

To declare or program?
A seemingly perpetual discussion that happens at every Radar gathering gained particular prominence
this time — for a given task, should you write a declarative specification using JSON, YAML or
something domain-specific like HCL, or should you write code in a general-purpose programming
language? For example, we discussed the differences between Terraform Cloud Operator versus
Crossplane, whether to use the AWS CDK or not and using Dagger for programming a deployment
pipeline among other cases. Declarative specifications, while often easier to read and write,
offer limited abstractions which leads to repetitive code. Proper programming languages can use
abstractions to avoid duplication, but these abstractions can make the code considerably harder to
follow, especially when the abstractions are layered after years of changes. In our experience, there’s
no universal answer to the question posed above. Teams should consider both approaches, and when
a solution proves difficult to implement cleanly in one language type, they should reevaluate the other
type. It can even make sense to split concerns and implement them with different languages.

https://www.thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://www.thoughtworks.com/radar/tools/soda-core
https://www.thoughtworks.com/radar/tools/deepchecks
https://www.thoughtworks.com/radar/tools/giskard
https://www.thoughtworks.com/insights/blog/machine-learning-and-ai/effective-ml-part-II
https://www.thoughtworks.com/radar/tools/terraform-cloud-operator
https://www.thoughtworks.com/radar/tools/crossplane
https://www.thoughtworks.com/radar/platforms/aws-cloud-development-kit

© Thoughtworks, Inc. All Rights Reserved. 8

Hold HoldAssess AssessTrial TrialAdopt Adopt

1

4

21

2326

31
32

33

27

34

35

36

37

38

44

39

40

41 42
43

28

2

8

7

5

10

11

20

12

13

14

15

16

17

22

18
19

3
76

6159 60

57

55

52
50

47
48

64 65

66

67

68 69
70

71

72

73 74

75

78

77

79

53

51
49

46

92 93
94 95

96 97

98 99

100
101

102 103

104

105

106

107

83

82

84
85

86

91

89

87

24

25

30

29

80

88

90
81

6

9

45

56 58

62 63

54

The Radar

New Moved in/out No change

© Thoughtworks, Inc. All Rights Reserved.

Adopt
1. Applying product management to

internal platforms
2. CI/CD infrastructure as a service
3. Dependency pruning
4. Run cost as architecture fitness function

Trial
5. Accessibility annotations in designs
6. Bounded low-code platforms
7. Demo frontends for API-only products
8. Lakehouse architecture
9. Verifiable credentials

Assess
10. Accessibility-aware

component test design
11. AI-aided test-first development
12. Domain-specific LLMs
13. Intelligent guided accessibility tests
14. Logseq as team knowledge base
15. Prompt engineering
16. Reachability analysis when

testing infrastructure
17. Self-hosted LLMs
18. Tracking health over debt
19. Zero trust security for CI/CD

Hold
20. Casual management of webhooks
21. Lambda pinball
22. Planning for full utilization

Adopt
23. Contentful
24. GitHub Actions
25. K3s

Trial
26. Apache Hudi
27. Arm in the cloud
28. Ax
29. DuckDB
30. Feature Store
31. RudderStack
32. Strapi
33. TypeDB

Assess
34. Autoware
35. Cozo
36. Dapr
37. Immuta
38. Matter
39. Modal
40. Neon
41. OpenLineage
42. Passkeys
43. Spin

Hold
44. Denodo as primary data

transformation tool

Techniques Platforms

The Radar

© Thoughtworks, Inc. All Rights Reserved.

Adopt
45. DVC

Trial
46. Akeyless
47. Apicurio Registry
48. EventCatalog
49. FOSSA
50. Gitleaks
51. Helmfile
52. IBM Equal Access Accessibility Checker
53. Ktlint
54. Kubeflow
55. Mend SCA
56. Mozilla SOPS
57. Ruff
58. Soda Core
59. Steampipe
60. Terraform Cloud Operator
61. TruffleHog
62. Typesense
63. Vite

Assess
64. axe Linter
65. ChatGPT
66. DataFusion
67. Deepchecks
68. Design token translation tools
69. Devbox
70. Evidently
71. Giskard
72. GitHub Copilot
73. iamlive
74. Kepler
75. Kubernetes External Secrets Operator
76. Kubeshark
77. Obsidian
78. Ory Kratos
79. Philips’s self-hosted GitHub runner

Hold
—

Adopt
80. Gradle Kotlin DSL
81. PyTorch

Trial
82. dbt-unit-testing
83. Jetpack CameraViewfinder
84. Jetpack DataStore
85. Mikro ORM
86. Per-app language preferences
87. Quarto
88. River
89. Stencil
90. Synthetic Data Vault
91. Vitest

Assess
92. .NET 7 Native AOT
93. .NET MAUI
94. dbt-expectations
95. Directus
96. Ferrocene
97. Flutter for embedded
98. Fugue
99. Galacean Engine
100. LangChain
101. mljar-supervised
102. nanoGPT
103. pandera
104. Qwik
105. SolidJS
106. Turborepo
107. WebXR Device API

Hold
—

Tools Languages and Frameworks

The Radar

© Thoughtworks, Inc. All Rights Reserved.

Techniques

Hold HoldAssess AssessTrial TrialAdopt Adopt

1

4

21

2326

31
32

33

27

34

35

36

37

38

44

39

40

41 42
43

28

2

8

7

5

10

11

20

12

13

14

15

16

17

22

18
19

3
76

6159 60

57

55

52
50

47
48

64 65

66

67

68 69
70

71

72

73 74

75

78

77

79

53

51
49

46

92 93
94 95

96 97

98 99

100
101

102 103

104

105

106

107

83

82

84
85

86

91

89

87

24

25

30

29

80

88

90
81

6

9

45

56 58

62 63

54

Adopt
1. Applying product management to

internal platforms
2. CI/CD infrastructure as a service
3. Dependency pruning
4. Run cost as architecture fitness function

Trial
5. Accessibility annotations in designs
6. Bounded low-code platforms
7. Demo frontends for API-only products
8. Lakehouse architecture
9. Verifiable credentials

Assess
10. Accessibility-aware

component test design
11. AI-aided test-first development
12. Domain-specific LLMs
13. Intelligent guided accessibility tests
14. Logseq as team knowledge base
15. Prompt engineering
16. Reachability analysis when

testing infrastructure
17. Self-hosted LLMs
18. Tracking health over debt
19. Zero trust security for CI/CD

Hold
20. Casual management of webhooks
21. Lambda pinball
22. Planning for full utilization

New Moved in/out No change

© Thoughtworks, Inc. All Rights Reserved. 12

Techniques

1. Applying product management to internal platforms
Adopt

We keep getting good feedback from teams applying product management to internal platforms.
One key feature to remember, though: It’s not just about team structure or renaming existing platform
teams; it’s also about applying product-centric working practices within the team. Specifically, we’ve
received feedback that teams face challenges with this technique unless they have a product-centric
mindset. This likely means additional roles, such as a product manager, alongside changes to other
areas, such as requirements gathering and the measurement of success. Working this way means
establishing empathy with internal consumers (the development teams) and collaborating with them
on the design. Platform product managers create roadmaps and ensure the platform delivers value
to the business and enhances the developer experience. We continue to see this technique as key to
building internal platforms to roll out new digital solutions quickly and efficiently.

2. CI/CD infrastructure as a service
Adopt

The options for CI/CD infrastructure as a service have become so manifold and mature that the cases
in which it’s worth managing your entire CI infrastructure yourself are becoming very rare. Using
managed services like GitHub Actions, Azure DevOps or Gitlab CI/CD comes with all the common
advantages (and trade-offs) of managed cloud services. You don’t have to spend time, effort and
hardware costs on maintenance and operations of this often complex infrastructure. Teams can take
advantage of elasticity and self-service, whereas provisioning more of the right agents or getting
a new plugin or feature are often a bottleneck in companies that host CI themselves. Even the use
cases that require to run build and verification on your own hardware can now mostly be covered with
self-hosted runners (we’ve written about some for GitHub Actions, actions-runner-controller and the
Philips’s self-hosted GitHub runner). Note, however, that you won’t get out-of-the-box security just
because you’re using a managed services; while mature services provide all the security features you
need, you’ll still need to use them to implement zero trust security for your CI/CD infrastructure.

3. Dependency pruning
Adopt

Starter kits and templates are widely used in software projects to speed up initial setup, but they can
pull in many unnecessary dependencies for a particular project. It’s important to practice dependency
pruning — periodically taking a hard look at these dependencies and pruning any that are not used.
This helps reduce build and deploy times and decrease the project’s attack surface by removing
potential vulnerabilities. Although this isn’t a new technique, given the increasing frequency of attacks
on software supply chains, we advocate for renewed attention to it.

4. Run cost as architecture fitness function
Adopt

Automatically estimating, tracking and predicting cloud infrastructure run cost is crucial for today’s
organizations. The cloud providers’ savvy pricing models, combined with the proliferation of pricing
parameters and the dynamic nature of today’s architecture, can lead to surprisingly expensive run
costs. Even though this technique has been in Adopt since 2019, we want to highlight the importance
of considering run cost as an architecture fitness function, especially today, due to accelerated cloud

https://www.thoughtworks.com/radar/platforms/github-actions
https://www.thoughtworks.com/radar/platforms/azure-devops
https://www.thoughtworks.com/radar/platforms/gitlab-ci-cd
https://www.thoughtworks.com/radar/platforms/actions-runner-controller
https://www.thoughtworks.com/radar/tools/philips-s-self-hosted-github-runner
https://www.thoughtworks.com/radar/techniques/zero-trust-security-for-ci-cd

© Thoughtworks, Inc. All Rights Reserved. 13

adoption and the growing attention to FinOps practices. Many commercial platforms provide tools
that can consolidate and clarify cloud costs for business leaders. Some of them are designed to show
cloud run costs to finance organizations or originating business units.

However, cloud consumption decisions are usually made at the engineering level, where systems are
designed. It’s important that the engineers making design decisions have some way of predicting
the cost impact of their architectural decisions. Some teams automate this prediction early in the
development lifecycle. Tools like Infracost help teams predict cost impact when thinking about
possible changes to infrastructure as code. This computation can be automated and woven into the
CD pipeline. Note that cost will be impacted by architectural decisions combined with actual usage
levels; to do this properly, you need good projections of expected usage levels. Early and frequent
feedback on run cost can prevent it from soaring. When the predicted cost deviates from what was
expected or acceptable, the team can discuss whether it’s time to evolve the architecture.

5. Accessibility annotations in designs
Trial

The earlier accessibility is considered in software delivery, the easier and cheaper it is to ensure
what’s built works for as many people as possible. Tools that help communicate accessibility
annotations in designs help teams consider important elements like document structure, semantic
HTML and alternative texts from the beginning of their work. This enables them to ensure user
interfaces meet global accessibility standards and address common failures that are actually fairly
easy to avoid. Figma offers a range of accessibility notation plugins: The A11y Annotation Kit,
Twitter’s Accessibility Annotation Library and the Axe toolset’s Axe for Designers.

6. Bounded low-code platforms
Trial

We’ve always been advocates of writing less code. Simplicity is one of the core values underlying
our sensible defaults for software development. For example, we try not to anticipate needs and only
introduce code that satisfies immediate business requirements and nothing else. One way to achieve
this is to create engineering platforms that make this possible on an organizational basis.

This is also the stated aim of many low-code platforms surging in popularity right now. Platforms like
Mendix or Microsoft Power Apps can expose common business processes for reuse and simplify
the problems of getting new functionality deployed and in the hands of users. These platforms have
made great strides in recent years with testability and support for good engineering practices. They’re
particularly useful for simple tasks or event-triggered apps. However, asking them to adapt to a nearly
infinite range of business requirements brings complexity. Although developers might be writing less
(or zero) code, they must also become experts in an all-encompassing commercial platform. We would
advise businesses to consider if they need all the functionality these products bring or if they’re better
off pursuing bounded low-code platforms, either by developing their own platform as an internal
product or by carefully constraining the use of commercial low-code products to those simple tasks
at which they excel.

Techniques

https://www.thoughtworks.com/radar/tools/infracost
https://www.thoughtworks.com/radar/tools/figma
https://www.figma.com/community/file/953682768192596304
https://www.figma.com/community/file/976946194228458698
https://www.figma.com/community/plugin/1085612091163821851/Axe-for-Designers-(FREE)
https://www.mendix.com/
https://powerapps.microsoft.com/
https://www.thoughtworks.com/radar/techniques/applying-product-management-to-internal-platforms
https://www.thoughtworks.com/radar/techniques/applying-product-management-to-internal-platforms

© Thoughtworks, Inc. All Rights Reserved. 14

7. Demo frontends for API-only products
Trial

One of the big challenges in developing APIs is capturing and communicating their business value.
APIs are, by their nature, technical artifacts. Whereas developers can easily comprehend JSON
payloads, OpenAPI (Swagger) specs and Postman demos, business stakeholders tend to respond
better to demos they can interact with. The value of the product is more clearly articulated when you
can see and touch it, which is why we sometimes find it worthwhile to invest in demo frontends for
API-only products. When a custom graphical UI is built alongside an API product, stakeholders can see
analogies to paper forms or reports that might be more familiar to them. As the interaction model and
richness of the demo UI evolves, it allows them to make more informed decisions about the direction
the API product should take. Working on the UI has the added benefit of increasing developers’
empathy for business users. This isn’t a new technique — we’ve been doing this successfully when
necessary as long as API products have been around. However, because this technique isn’t widely
known, we thought it worthwhile calling attention to it.

8. Lakehouse architecture
Trial

Lakehouse architecture is an architectural style that combines the scalability of data lakes with
the reliability and performance of data warehouses. It enables organizations to store and analyze
large volumes of diverse data in a single platform as opposed to having them in separate lake and
warehouse tiers, using the same familiar SQL-based tools and techniques. While the term is often
associated with vendors like Databricks, open alternatives such as Delta Lake, Apache Iceberg
and Apache Hudi are worth considering. Lakehouse architecture can complement data mesh
implementations. Autonomous data product teams can choose to leverage a Lakehouse within
their data products.

9. Verifiable credentials
Trial

When we first included it in the Radar three years ago, verifiable credentials (VC) was an intriguing
standard with some promising potential applications, but it wasn’t widely known or understood outside
the community of enthusiasts. This was particularly true when it came to the credential-granting
institutions, such as state governments, who would be responsible for implementing the standards.
Three years and one pandemic later, the demand for cryptographically secure, privacy-respecting
and machine-verifiable electronic credentials has grown and, as a result, governments are starting to
wake up to VC’s potential. The W3C standard puts credential holders at the center, which is similar to
our experience when using physical credentials: users can put their verifiable credentials in their own
digital wallets and show them to anyone at any time without the permission of the credentials’ issuer.
This decentralized approach also helps users to better manage and selectively disclose their own
information which greatly improves data privacy protection.

Several of our teams have engaged in projects involving verifiable credentials technology in the past
six months. Not surprisingly, the scenarios vary across countries and government departments.
Our team has explored different combinations of decentralized identifiers, verifiable credentials and
verifiable presentation on multiple projects. This is a developing field, and now that we’ve had more
experience, we want to keep track of it in the Radar.

Techniques

https://www.thoughtworks.com/radar/tools/swagger
https://www.thoughtworks.com/radar/tools/postman
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.thoughtworks.com/radar/platforms/delta-lake
https://www.thoughtworks.com/radar/platforms/apache-iceberg
https://www.thoughtworks.com/radar/platforms/apache-hudi
https://www.thoughtworks.com/radar/techniques/data-mesh
https://www.w3.org/TR/vc-data-model/

© Thoughtworks, Inc. All Rights Reserved. 15

10. Accessibility-aware component test design
Assess

One of the many places in the software delivery process to consider accessibility requirements early
on is during web component testing. Testing framework plugins like chai-a11y-axe provide assertions
in their API to check for the basics. But in addition to using what testing frameworks have to offer,
accessibility-aware component test design further helps to provide all the semantic elements needed
by screen readers and other assistive technologies.

Firstly, instead of using test ids or classes to find and select the elements you want to validate, use a
principle of identifying elements by ARIA roles or other semantic attributes that are used by assistive
technologies. Some testing libraries, like Testing Library, even recommend this in their documentation.
Secondly, do not just test for click interactions; also consider users who cannot use a mouse or see
the screen, and consider adding additional tests for the keyboard and other interactions.

11. AI-aided test-first development
Assess

Like many in the software industry, we’ve been exploring the rapidly evolving AI tools that can support
us in writing code. We see many people feed ChatGPT with an implementation, and then ask it to
generate tests for that implementation. However, because we’re big believers in TDD, and we don’t
always want to feed an external model with our potentially sensitive implementation code, one of our
experiments in this space is a technique we call AI-aided test-first development. In this approach,
we get ChatGPT to generate tests for us, and then a developer implements the functionality.
Specifically, we first describe the tech stack and the design patterns we’re using in a prompt
“fragment” that is reusable across multiple use cases. Then we describe the specific feature we want
to implement, including the acceptance criteria. Based on all that, we ask ChatGPT to generate an
implementation plan for that feature in our architectural style and tech stack. Once we sanity check
that implementation plan, we ask it to generate tests for our acceptance criteria.

This approach has worked surprisingly well for us: It required the team to come up with a concise
description of their architectural style and helped junior developers and new team members code
features aligned with the team’s existing style. The main drawback of this approach is that even
though we don’t give the model our source code, we still feed it potentially sensitive information
such as our tech stack and feature descriptions. Teams should ensure they’re working with their
legal advisors to avoid any intellectual property issues, at least until a “for business” version of
these AI tools becomes available.

12. Domain-specific LLMs
Assess

We’ve featured large language models (LLMs) like BERT and ERNIE in the Radar before; domain-
specific LLMs, however, are an emerging trend. Fine-tuning general-purpose LLMs with domain-
specific data can tailor them for various tasks, including information retrieval, customer support
augmentation and content creation. This practice has shown promising results in industries like
legal and finance, as demonstrated by OpenNyAI for legal document analysis. With more
organizations experimenting with LLMs and new models like GPT4 being released, we can
expect more domain-specific use cases in the near future.

Techniques

https://www.npmjs.com/package/chai-a11y-axe
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://testing-library.com/docs/queries/about/#priority
https://www.thoughtworks.com/radar/tools/chatgpt
https://martinfowler.com/articles/2023-chatgpt-xu-hao.html
https://www.thoughtworks.com/radar/techniques/bert
https://www.thoughtworks.com/radar/languages-and-frameworks/ernie
https://www.linkedin.com/news/story/pwc-lawyers-get-an-ai-helper-5581124/
https://opennyai.org/

© Thoughtworks, Inc. All Rights Reserved. 16

However, there are challenges and pitfalls to consider. First, LLMs can be confidently wrong, so it’s
essential to build mechanisms into your process to ensure the accuracy of results. Second, third-party
LLMs may retain and re-share your data, posing a risk to proprietary and confidential information.
Organizations should carefully review the terms of use and trustworthiness of providers or consider
training and running LLMs on an infrastructure they control. As with any new technology, businesses
must tread carefully, understanding the implications and risks associated with LLM adoption.

13. Intelligent guided accessibility tests
Assess

It can be a bit daunting to make a web application compliant with assistive technologies when
you yourself never use them, and you feel like you don’t yet know anything about directives like
the Web Content Accessibility Guidelines (WCAG). Intelligent guided accessibility tests are one
category of tools that help test if you’ve done the right thing without needing to be an expert on
accessibility. These tools are browser extensions that scan your website, summarize how assistive
technology would interpret it and then ask you a set of questions to confirm whether the structure and
elements you created are as intended. We’ve used axe DevTools, Accessibility Insights for Web
or the ARC Toolkit on some of our projects.

14. Logseq as team knowledge base
Assess

Team knowledge management is a familiar concept with teams using tools such as wikis to store
information and onboard new team members. Some of our teams now prefer to use Logseq as a team
knowledge base. An open-source knowledge-management system, Logseq is powered by a graph
database, helps users organize thoughts, notes and ideas and can be adapted for team use with
Git-based storage. Logseq allows teams to build a democratic and accessible knowledge base,
providing each member with a personalized learning journey and facilitating efficient onboarding.
However, as with any knowledge management tool, teams will need to apply good curation and
management of their knowledge base to avoid information overload or disorganization.

While similar functionality is available in tools like Obsidian, the key difference lies in Logseq’s focus
on consumption, with paragraph-based linking enabling team members to quickly find the relevant
context without having to read an entire article.

15. Prompt engineering
Assess

Prompt engineering refers to the process of designing and refining prompts for generative AI models
to obtain high-quality responses from the model. This involves carefully crafting prompts that are
specific, clear and relevant to the desired task or application in order to elicit useful outputs from
the model. Prompt engineering aims to enhance large language model (LLM) capabilities in tasks like
question answering and arithmetic reasoning or in domain-specific contexts. For software creation,
you might use prompt engineering to get an LLM to write a story, an API or a test suite based on a
brief conversation with a stakeholder or some notes. Developing effective prompting techniques
is becoming a valuable skill in working with AI systems. There is debate over whether prompt
engineering is an art or science, and potential security risks, such as “prompt injection attacks,”
should be considered.

Techniques

https://en.wikipedia.org/wiki/Web_Content_Accessibility_Guidelines
https://docs.deque.com/devtools-html/4.0.0/en/devtools-igt
https://accessibilityinsights.io/docs/web/overview/
https://www.tpgi.com/arc-platform/arc-toolkit/
https://logseq.com/
https://www.thoughtworks.com/radar/tools/obsidian

© Thoughtworks, Inc. All Rights Reserved. 17

16. Reachability analysis when testing infrastructure
Assess

When deploying infrastructure as code, we’ve noticed that a lot of time can be spent diagnosing and
repairing production issues that result from systems being unable to communicate with one another.
Because the network topology between them can be complex, the entire route may not be traversable
even if individual ports and endpoints have been configured correctly. Infrastructure testing practices
usually include verifying the right ports are open or closed or that an endpoint can be accessed,
but we’ve only recently begun doing reachability analysis when testing infrastructure. The analysis
generally involves more than simple yes/no determinations. For example, a tool might traverse and
report on multiple routes through transit gateways. This technique is supported by tools across all the
major cloud providers. Azure has a service called Network Watcher that can be scripted in automated
tests and GCP supports Connectivity Tests. Now, in AWS, you can test reachability across accounts in
the same organization.

17. Self-hosted LLMs
Assess

Large language models (LLMs) generally require significant GPU infrastructure to operate. We’re
now starting to see ports, like llama.cpp, that make it possible to run LLMs on different hardware —
including Raspberry Pis, laptops and commodity servers. As such, self-hosted LLMs are now a reality,
with open-source examples including GPT-J, GPT-JT and LLaMA. This approach has several benefits,
offering better control in fine-tuning for a specific use case, improved security and privacy as well as
offline access. However, you should carefully assess the capability within the organization and the
cost of running such LLMs before making the decision to self-host.

18. Tracking health over debt
Assess

Tracking technical debt is a perennial topic in software delivery organizations. What is technical
debt and what is not? How do you prioritize it? And most importantly, how do you express the value
of paying it off to your internal stakeholders? Following the Agile Manifesto’s manner of reasoning
— “while there is value in the item on the right, we value the item on the left more” — we like the
idea of tracking health over debt. The folks at REA in Australia share a good example of what such
health tracking can look like. They track system ratings in the categories of development, operations
and architecture.

Focusing on health instead of debt is a more constructive framing. It connects a team to the ultimate
value of reducing debt and helps them prioritize it. Every piece of tackled technical debt should ideally
be connectable to one of the agreed expectations. Teams should treat the health rating the same
as other service-level objectives (SLOs) and prioritize improvements whenever they drop out of the
“green zone” for a given category.

Techniques

https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-connectivity-cli
https://cloud.google.com/network-intelligence-center/docs/connectivity-tests/concepts/overview
https://aws.amazon.com/about-aws/whats-new/2022/11/amazon-vpc-reachability-analyzer-network-analysis-accounts-aws-organization/
https://github.com/ggerganov/llama.cpp
https://huggingface.co/docs/transformers/model_doc/gptj
https://huggingface.co/togethercomputer/GPT-JT-6B-v1
https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://www.rea-group.com/about-us/news-and-insights/blog/what-good-software-looks-like-at-rea/

© Thoughtworks, Inc. All Rights Reserved. 18

19. Zero trust security for CI/CD
Assess

If not properly secured, the infrastructure and tools that run our build and delivery pipelines
can become a big liability. Pipelines need access to critical data and systems like source code,
credentials and secrets to build and deploy software. This makes these systems very inviting to
malicious actors. We therefore highly recommend applying zero trust security for CI/CD pipelines
and infrastructure — trusting them as little as necessary. This encompasses a number of techniques:
If available, authenticate your pipelines with your cloud provider via federated identity mechanisms
like OIDC, instead of giving them direct access to secrets. Implement the principle of least privilege
by minimizing the access of individual user or runner accounts, rather than employing “god user
accounts” with unlimited access. Use your runners in an ephemeral way instead of reusing them,
to reduce the risk of exposing secrets from previous jobs or running jobs on compromised runners.
Keep the software in your agents and runners up to date. Monitor the integrity, confidentiality and
availability of your CI/CD systems the same way you would monitor your production software.

We’re seeing teams forget about these types of practices particularly when they’re used to working
with a self-managed CI/CD infrastructure in internal network zones. While all of these practices are
important in your internal networks, they become even more crucial when using a managed service, as
that extends the attack surface and blast radius even more.

20. Casual management of webhooks
Hold

As remote work continues to increase, so does the adoption of chat collaboration platforms and
ChatOps. These platforms often offer webhooks as a simple way to automate sending messages and
notifications, but we’re noticing a concerning trend: the casual management of webhooks — where
they’re treated as configuration rather than a secret or credential. This can lead to phishing attacks
and compromised internal spaces.

Webhooks are credentials that offer privileged access to an internal space and may contain API keys
that can be easily extracted and utilized directly. Not treating them as secrets opens up the possibility
of successful phishing attacks. Webhooks in Git repos can easily be extracted and used to send
fraudulent payloads, which the user may not have any way to authenticate. To mitigate this threat,
teams handling webhooks need to shift their culture and treat webhooks as sensitive credentials.
Software developers building integrations with ChatOps platforms must also be mindful of this risk
and ensure that webhooks are handled with proper security measures.

Techniques

https://www.thoughtworks.com/radar/techniques/zero-trust-architecture
https://www.techtarget.com/searchitoperations/definition/ChatOps
https://en.wikipedia.org/wiki/Webhook

© Thoughtworks, Inc. All Rights Reserved. 19

21. Lambda pinball
Hold

While serverless architectures can be extremely useful for solving some problems, they do come with
a certain level of complexity, especially when they involve nontrivial execution and data flows across
multiple interdependent Lambdas — this can sometimes result in a Lambda pinball architecture.
Our teams have reported that maintaining and testing Lambda pinball architectures can be very
challenging: understanding the infrastructure, deployment, diagnosis and debugging can become
difficult. At a code level, simple mapping between domain concepts and the multiple Lambdas
involved is practically impossible, making any changes and additions challenging. Although we
believe serverless is the right fit for some problems and domains, it’s not a “silver bullet” for every
problem, which is why you should try to avoid Lambda pinball. One pattern that can help is to draw
a distinction between public and published interfaces and apply domain boundaries with published
interfaces between them.

22. Planning for full utilization
Hold

While the practice of creating excess capacity in the delivery process is well-known in the product
management community, we still see far too many teams planning for full utilization of team members.
Reserving some capacity during sprint planning generally leads to better predictability and better
quality; it promotes team resilience to unexpected events like illnesses, production issues, unexpected
product requests and tech debt, while also allowing productive activities like team building and
ideation that can lead to product innovation. Running at less than full utilization means teams can be
more thoughtful about the robustness of the resulting software and pay closer attention to the right
observability signals. Our experience is that a fully utilized team leads to a collapse in throughput as
well, just as a fully utilized highway creates slow and demoralizing traffic. For example, when
one of our teams had unpredictable support issues, they saw a 25% increase in throughput and
a 50% decrease in cycle time volatility by planning feature velocity based on only two of the three
developer pairs’ capacities.

Techniques

https://www.thoughtworks.com/radar/techniques/serverless-architecture
https://www.thoughtworks.com/radar/platforms/aws-lambda
https://twitter.com/ctford/status/1128774411832762369
https://www.amazon.com/Principles-Product-Development-Flow-Generation/dp/1935401009
https://www.amazon.com/Principles-Product-Development-Flow-Generation/dp/1935401009

© Thoughtworks, Inc. All Rights Reserved.

Platforms

Hold HoldAssess AssessTrial TrialAdopt Adopt

1

4

21

2326

31
32

33

27

34

35

36

37

38

44

39

40

41 42
43

28

2

8

7

5

10

11

20

12

13

14

15

16

17

22

18
19

3
76

6159 60

57

55

52
50

47
48

64 65

66

67

68 69
70

71

72

73 74

75

78

77

79

53

51
49

46

92 93
94 95

96 97

98 99

100
101

102 103

104

105

106

107

83

82

84
85

86

91

89

87

24

25

30

29

80

88

90
81

6

9

45

56 58

62 63

54

Adopt
23. Contentful
24. GitHub Actions
25. K3s

Trial
26. Apache Hudi
27. Arm in the cloud
28. Ax
29. DuckDB
30. Feature Store
31. RudderStack
32. Strapi
33. TypeDB

Assess
34. Autoware
35. Cozo
36. Dapr
37. Immuta
38. Matter
39. Modal
40. Neon
41. OpenLineage
42. Passkeys
43. Spin

Hold
44. Denodo as primary data

transformation tool

New Moved in/out No change

© Thoughtworks, Inc. All Rights Reserved. 21

23. Contentful
Adopt

Headless content management systems have become a common component of digital platforms.
Contentful is still our default choice in this space, but new entrants like Strapi have impressed us too.
We particularly like Contentful’s API-first approach and implementation of CMS as code. It supports
powerful content modeling primitives as code and content model evolution scripts, which allow it to be
treated like other data store schemas and enable evolutionary database design practices to be applied
to CMS development. Recently, Contentful has released an app framework to write apps that make it
easier to adapt Contentful to individual business processes and to integrate with other services. Apps
can be built by and for a specific organization but a marketplace for apps is emerging, too.

24. GitHub Actions
Adopt

GitHub Actions has become a default starting point for many teams that need to get CI or CD up
and running quickly in a greenfield environment. Among other things, it can take on more complex
workflows and call other actions in composite actions. Although the ecosystem in GitHub Marketplace
continues to grow, we still urge caution in giving third-party GitHub Actions access to your build
pipeline. We recommend following GitHub’s advice on security hardening to avoid sharing secrets in
insecure ways. However, the convenience of creating your build workflow directly in GitHub next to
your source code combined with the ability to run GitHub Actions locally, using open-source tools
such as act, is a compelling option that has streamlined the setup and onboarding of our teams.

25. K3s
Adopt

K3s remains our default Kubernetes distribution for edge computing needs and resource-constrained
environments. It’s a lightweight, fully compliant Kubernetes but with reduced operational overhead.
It uses sqlite3 as the default storage backend instead of etcd. It has a reduced memory footprint
because it runs all relevant components in a single process. We’ve used K3s in environments like
industrial control systems and point-of-sale machines, and we’re quite happy with our decision. With
the K3s runtime containerd now supporting wasm, K3s can run and manage WebAssembly workloads
directly, further reducing the runtime overhead.

26. Apache Hudi
Trial

Apache Hudi is an open-source data lake platform that brings ACID transactional guarantees to the
data lake. Our teams have had a great experience using Hudi in a high-volume, high-throughput
scenario with real-time inserts and upserts. We particularly like the flexibility Hudi offers for
customizing the compaction algorithm which helps in dealing with “small files” problems. Apache Hudi
falls in the same category as Delta Lake and Apache Iceberg. They all support similar features, but
each differs in the underlying implementations and detailed feature lists.

Platforms

http://www.contentful.com/
https://www.thoughtworks.com/radar/platforms/strapi
http://www.contentful.com/r/knowledgebase/cms-as-code/
http://martinfowler.com/articles/evodb.html
https://www.contentful.com/developers/docs/extensibility/app-framework/
https://docs.github.com/en/actions
https://github.com/marketplace?type=actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://github.com/nektos/act
https://k3s.io/
https://www.thoughtworks.com/radar/platforms/kubernetes
https://docs.python.org/3/library/sqlite3.html
https://etcd.io/
https://github.com/containerd/runwasi
https://www.thoughtworks.com/radar/languages-and-frameworks/webassembly
https://hudi.apache.org/
https://www.thoughtworks.com/radar/platforms/delta-lake
https://www.thoughtworks.com/radar/platforms/apache-iceberg

© Thoughtworks, Inc. All Rights Reserved. 22

27. Arm in the cloud
Trial

Arm compute instances in the cloud have become increasingly popular over the past few years
due to their cost and energy efficiency compared to traditional x86-based instances. Many cloud
providers now offer Arm-based instances, including AWS, Azure and GCP. The cost benefits of
running Arm in the cloud can be particularly beneficial for businesses that run large workloads or
need to scale. Based on our experiences we recommend Arm compute instances for all workloads
unless there are architecture-specific dependencies. The tooling to support multiple architectures,
like multi-arch docker images, also simplify build and deploy workflows.

28. Ax
Trial

Faced with the challenge of exploring large configuration spaces, where it may take a significant
amount of time to evaluate a given configuration, teams can turn to adaptive experimentation, a
machine-guided, iterative process to find optimal solutions in a resource-efficient manner. Ax is a
platform for managing and automating adaptive experiments, including machine learning experiments,
A/B tests and simulations. Currently, it supports two optimization strategies: Bayesian optimization
using BoTorch, which is built on top of PyTorch, and contextual bandits. Facebook, when releasing
Ax and BoTorch, described use cases like increasing the efficiency of back-end infrastructure, tuning
ranking models and optimizing hyperparameter search for a machine learning platform. We’ve had
good experiences using Ax for a variety of use cases, and while tools for hyperparameter tuning exist,
we’re unaware of a platform that provides functionality in a scope similar to Ax.

29. DuckDB
Trial

DuckDB is an embedded, columnar database for data science and analytical workloads. Data analysts
usually load the data locally in tools like pandas or data.table to quickly analyze patterns and form
hypotheses before scaling the solution in the server. However, we’re now using DuckDB for such use
cases, because it unlocks the potential to do larger than memory analysis. DuckDB supports range
joins, vectorized execution and multiversion concurrency control (MVCC) for large transactions, and
our teams are quite happy with it.

30. Feature Store
Trial

Any software system needs to properly represent the given domain in which it is employed and should
always be informed by key aims and goals. Machine learning (ML) projects are no different. Feature
engineering is a crucial aspect of engineering and designing ML software systems. Feature Store is a
related architectural concept to facilitate the identification, discovery and monitoring of the features
pertinent to the given domain or business problem. Implementing this concept involves a combination
of architectural design, data engineering and infrastructure management to create a scalable, efficient
and reliable ML system. From a tooling perspective, you can find open-source and fully managed
platforms, but they’re only one part of this concept. In the end-to-end design of ML systems,
implementing a feature store enables the following capabilities: the ability to (1) define the right

Platforms

https://www.arm.com/markets/computing-infrastructure/cloud-computing
https://aws.amazon.com/ec2/graviton/
https://azure.microsoft.com/blog/azure-virtual-machines-with-ampere-altra-arm-based-processors-generally-available/
https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
https://www.docker.com/blog/multi-arch-build-and-images-the-simple-way/
https://ax.dev/
https://botorch.org/docs/botorch_and_ax
https://www.thoughtworks.com/radar/languages-and-frameworks/pytorch
https://www.thoughtworks.com/radar/techniques/contextual-bandits
https://ai.facebook.com/blog/open-sourcing-ax-and-botorch-new-ai-tools-for-adaptive-experimentation/
https://ai.facebook.com/blog/open-sourcing-ax-and-botorch-new-ai-tools-for-adaptive-experimentation/
https://duckdb.org/
https://pandas.pydata.org/
https://github.com/Rdatatable/data.table
https://duckdb.org/2022/05/27/iejoin.html
https://duckdb.org/2022/05/27/iejoin.html
https://en.wikipedia.org/wiki/Feature_engineering
https://en.wikipedia.org/wiki/Feature_engineering
https://www.featurestore.org/

© Thoughtworks, Inc. All Rights Reserved. 23

features; (2) enhance reusability and make features consistently available regardless of the type of
model, which also includes setting up the feature engineering pipelines that curate data as described
in the feature store; (3) enable feature discovery and (4) enable feature serving. Our teams leverage
feature stores in production to reap these benefits for end-to-end ML systems.

31. RudderStack
Trial

RudderStack is a customer data platform (CDP) that makes it easy to store data in a data warehouse
or data lake. This approach, increasingly known as Headless CDP, separates the CDP’s features
from its user interface and emphasizes configurability through APIs and the data warehouse/
lake as primary storage. As expected from a product in this category, RudderStack has a rich
repository of integrations with third-party products (both as source and sink) and the ability to ingest
custom events. RudderStack has both a commercial offering and a self-hosted OSS version with
functionality limitations.

32. Strapi
Trial

Strapi is an open-source, NodeJS-based, headless content management system (CMS) similar to
Contentful. It has been around for a while, and we’ve used it successfully in a few projects. Strapi
provides both REST and GraphQL APIs, has comprehensive documentation, features an easy-to-use
data model API and supports customizing both UI and logic.

33. TypeDB
Trial

TypeDB is a knowledge graph database, designed to work with intricate data relationships which
makes it easier to query and analyze large data sets. TypeDB’s TypeQL query language has a SQL-
like syntax which eases the learning curve for schema definition, querying and exploration. TypeDB
comes with a variety of tools that make it easier to work with the database, including a command-
line interface and a graphical user interface, TypeDB Studio, which provides some features for
working with TypeDB, such as managing schemas, querying data, visualizing relationships or even
collaborating with others. There is a good deal of documentation available and an active community
for support. Our teams used it to build knowledge graphs of taxonomic concepts across different
databases and took advantage of its strong inference capabilities by adding new inference rules
increasing efficiency and reducing workload. With its intuitive developer experience and supportive
community, TypeDB is a good candidate to consider for any team looking to build data solutions that
depend on complex data relationships, including natural language data, recommendation engines and
knowledge graphs.

34. Autoware
Assess

Autoware is an open-source autonomous driving software stack built on ROS (Robot Operating
System) which can be used to develop and deploy advanced driver assist systems (ADAS) for a wide
range of vehicles like cars and trucks. It provides a set of tools and algorithms for various aspects

Platforms

https://www.rudderstack.com/
https://strapi.io/
https://www.thoughtworks.com/radar/platforms/contentful
https://github.com/vaticle/typedb
https://github.com/vaticle/typeql
https://github.com/vaticle/typedb-studio
https://docs.vaticle.com/docs/general/introduction
https://github.com/autowarefoundation/autoware
https://www.ros.org
https://www.ros.org

© Thoughtworks, Inc. All Rights Reserved. 24

of autonomous driving, such as perception, decision-making and control. It also has a planning and
control module that generates a trajectory for the vehicle based on its environment and objectives.
It encourages open innovations in autonomous driving technology. We’re building prototypes using
Autoware to validate new product ideas and find it helpful.

35. Cozo
Assess

Cozo is an embeddable relational database that uses Datalog for querying. We’re intrigued with its
support for time-travel queries and modeling graph data in relational schema. We quite like that it
delegates data storage to existing popular engines — including SQLite, RocksDB, Sled and TiKV.
Although Cozo is still in its early stages of development, we find it’s worth assessing.

36. Dapr
Assess

Dapr, short for Distributed Application Runtime, helps developers to build resilient, stateless and
stateful microservices that run in the cloud. Some people may confuse it with a service mesh, because
it uses a sidecar architecture that runs as a separate process alongside the application. Dapr is more
application oriented and focuses on encapsulating the fault tolerance and connectivity required for
building distributed applications. For example, Dapr provides multiple building blocks, from service
invocation and message pub/sub to distributed lock, all of which are common patterns in distributed
communication. One of our teams evaluated Dapr on a recent project; given their positive experience,
they’re looking forward to bringing it to other projects in the future.

37. Immuta
Assess

Immuta is a data security platform that allows you to secure access to your data, automatically
discover sensitive data and audit how data is being used in an organization. In the past, we’ve talked
about the importance of automation, engineering practices and treating security policy as code
when we think about security concerns. Data security is no different. Our teams have been exploring
Immuta to manage data policies as code to allow for fine-grained access control which is beyond
what role-based access control (RBAC) can offer. Version-controlled policies can be tested and
then provisioned as part of a CI/CD pipeline. In a decentralized data ecosystem, like one facilitated
by data mesh, having domain-specific roles can lead to role or group proliferation in the identity
system. Immuta’s attribute-based access control (ABAC) capability reduces the access grant to a
mathematical equation of matching an “attribute” on the user to a “tag” on the data source. This
platform is still new but certainly worth highlighting for data security needs.

38. Matter
Assess

Matter is an open standard for smart home technology, launched by Amazon, Apple, Google, Comcast
and the Zigbee Alliance (now Connectivity Standards Alliance, or CSA). It enables devices to work
with any Matter-certified ecosystem, thus reducing fragmentation and promoting interoperability
among devices and IoT platforms from different providers. Its focus on standardization at the

Platforms

https://github.com/cozodb/cozo
https://en.wikipedia.org/wiki/Datalog
https://docs.cozodb.org/en/latest/releases/v0.4.html
https://dapr.io/
https://docs.dapr.io/concepts/service-mesh/
https://www.thoughtworks.com/radar/techniques/service-mesh
https://docs.dapr.io/developing-applications/building-blocks/
https://www.immuta.com/
https://www.thoughtworks.com/radar/techniques/security-policy-as-code
https://en.wikipedia.org/wiki/Role-based_access_control
https://www.thoughtworks.com/radar/techniques/data-mesh
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://csa-iot.org/all-solutions/matter/

© Thoughtworks, Inc. All Rights Reserved. 25

application level, support for Wi-Fi and Thread as communication mediums and backing from major
tech companies set it apart from other protocols like Zigbee. Although the number of Matter-enabled
devices is still relatively low, its growing importance in the IoT space makes it worth assessing for
those looking to build smart home and IoT solutions.

39. Modal
Assess

Modal is a platform as a service (PaaS) that offers on-demand compute without the need for your own
infrastructure. Modal lets you deploy machine learning models, massively parallel compute jobs, task
queues and web apps. It provides a container abstraction that makes the switch from local to cloud
deployment seamless, with hot reload both locally and in the cloud. It even removes deployments
automatically, avoiding the need for manual clean-up, but can also make them persistent.

Modal is written by the same team that developed the first recommendation engine for Spotify. It
takes care of the AI/ML stack end-to-end and can provide on-demand GPU resources, which is useful
if you have particularly intensive computational needs. Whether you’re working on your laptop or in the
cloud, Modal just works, providing an easy and efficient way to run and deploy your projects.

40. Neon
Assess

Neon is an open-source alternative to AWS Aurora PostgreSQL. Cloud-native analytical databases
have embraced the technique of separating storage from compute nodes to elastically scale on
demand. However, it’s difficult to do the same in a transactional database. Neon achieves this
with its new multi-tenant storage engine for PostgreSQL. With minimal changes to the mainstream
PostgreSQL code, Neon leverages AWS S3 for long-term data storage and elastically scales
the processing up or down (including scale-to-zero) for compute. This architecture has several
benefits — including cheap and fast clones, copy-on-write and branching. We’re quite excited to
see new innovations on top of PostgreSQL. Our teams are evaluating Neon, and we recommend you
assess it as well.

41. OpenLineage
Assess

OpenLineage is an open standard for lineage metadata collection for data pipelines, designed to
instrument jobs as they’re running. It defines a generic model of run, job and data set entities using
consistent naming conventions. The core lineage model is extensible by defining specific facets
to enrich those entities. OpenLineage solves the interoperability problem between producers and
consumers of lineage data who otherwise would need to know how to speak to each other in various
ways. Although there is a risk of it being another “standard in the middle,” being a Linux Foundation
AI & Data Foundation project increases its chances of gaining widespread adoption. OpenLineage
currently supports data collection for multiple platforms, such as Spark, Airflow and dbt,
although users need to configure its listeners. Support for OpenLineage data consumers
is more limited at this time.

Platforms

https://www.theverge.com/23165855/thread-smart-home-protocol-matter-apple-google-interview
https://modal.com/
https://neon.tech/
https://github.com/neondatabase/neon
https://neon.tech/branching
https://openlineage.io/
https://lfaidata.foundation/
https://lfaidata.foundation/
https://www.thoughtworks.com/radar/platforms/apache-spark
https://www.thoughtworks.com/radar/tools/airflow
https://www.thoughtworks.com/radar/tools/dbt
https://openlineage.io/ecosystem

© Thoughtworks, Inc. All Rights Reserved. 26

42. Passkeys
Assess

The “end of passwords” might be near, finally. Shepherded by the FIDO alliance and backed by
Apple, Google and Microsoft, passkeys are nearing mainstream usability. When setting up a new
login with passkeys, a key pair is generated: the website receives the public key and the user keeps
the private key. Handling login uses asymmetric cryptography. The user proves that they’re in
possession of the private key, but, unlike passwords, it’s never sent to the website. On users’ devices,
access to passkeys is protected using biometrics or a PIN.

Passkeys can be stored and synced within the Big Tech ecosystems, using Apple’s iCloud Keychain,
Google Password Manager or Windows Hello. In most cases this works only with recent OS and
browser versions. Notably, storing passkeys in Windows Hello is not supported on Windows 10.
Fortunately, though, the Client to Authenticator Protocol (CTAP) makes it possible for passkeys to be
kept on a different device other than the one that creates the key or needs it for login. For example,
a user creates a passkey for a website on Windows 10 and stores it on an iPhone by scanning a
QR code. Because the key is synced via iCloud the user can log in to the website from, say, their
MacBook. Passkeys can be stored on hardware security keys, too, and support for native apps has
arrived on iOS and Android.

Despite some usability issues — for example, Bluetooth needs to work because device proximity is
checked when a QR code is scanned — passkeys are worth considering. We suggest you experiment
with them on passkeys.io to get a feeling for their usability.

43. Spin
Assess

Spin is an open-source platform for building and running microservices in WebAssembly (WASM). In
previous editions of the Radar, we talked about WebAssembly in the context of browsers, but we’re
now witnessing the penetration on the server side due to its capabilities for fine-grained sandboxing,
cross-language interoperability and hot reloading. With Spin CLI, you can quickly create and distribute
WebAssembly microservices in Rust, TypeScript, Python and TinyGo. We’re excited about Spin, and we
recommend you carefully assess it as it moves out of early preview.

44. Denodo as primary data transformation tool
Hold

Denodo is a data virtualization tool that aims to make it easier to expose and secure transformed,
consumer-friendly data (from multiple underlying data sources and through a variety of interfaces)
from one platform. Data transformations within Denodo can be defined by creating virtual databases
and views using a SQL-like language called VQL which are executed when a user queries the virtual
database. Underneath, Denodo can delegate queries on the virtual databases against one or multiple
underlying databases.

Although Denodo makes it easy to start exposing consumer-friendly data, performance degrades
as layers of views and virtual databases are built on top of each other and queries with multiple
joins start hitting multiple underlying databases. These problems are solvable, but they require
fairly deep knowledge of the product’s behavior and performance tuning options. Because of these
drawbacks and given its limited support for unit testing, we recommend that you do not use Denodo
as a primary data transformation tool and use tools like Spark or SQL (with dbt) for your data
transformations instead.

Platforms

https://fidoalliance.org/passkeys/
https://en.wikipedia.org/wiki/Client_to_Authenticator_Protocol
https://www.passkeys.io/
https://github.com/fermyon/spin
https://www.thoughtworks.com/radar/languages-and-frameworks/webassembly
https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/
https://www.thoughtworks.com/radar/languages-and-frameworks/rust
https://www.thoughtworks.com/radar/languages-and-frameworks/typescript
https://www.denodo.com/
https://www.thoughtworks.com/radar/platforms/apache-spark
https://www.thoughtworks.com/radar/tools/dbt

© Thoughtworks, Inc. All Rights Reserved.

Tools

Adopt
45. DVC

Trial
46. Akeyless
47. Apicurio Registry
48. EventCatalog
49. FOSSA
50. Gitleaks
51. Helmfile
52. IBM Equal Access Accessibility Checker
53. Ktlint
54. Kubeflow
55. Mend SCA
56. Mozilla SOPS
57. Ruff
58. Soda Core
59. Steampipe
60. Terraform Cloud Operator
61. TruffleHog
62. Typesense
63. Vite

Assess
64. axe Linter
65. ChatGPT
66. DataFusion
67. Deepchecks
68. Design token translation tools
69. Devbox
70. Evidently
71. Giskard
72. GitHub Copilot
73. iamlive
74. Kepler
75. Kubernetes External Secrets Operator
76. Kubeshark
77. Obsidian
78. Ory Kratos
79. Philips’s self-hosted GitHub runner

Hold
—

Hold HoldAssess AssessTrial TrialAdopt Adopt

1

4

21

2326

31
32

33

27

34

35

36

37

38

44

39

40

41 42
43

28

2

8

7

5

10

11

20

12

13

14

15

16

17

22

18
19

3
76

6159 60

57

55

52
50

47
48

64 65

66

67

68 69
70

71

72

73 74

75

78

77

79

53

51
49

46

92 93
94 95

96 97

98 99

100
101

102 103

104

105

106

107

83

82

84
85

86

91

89

87

24

25

30

29

80

88

90
81

6

9

45

56 58

62 63

54

New Moved in/out No change

© Thoughtworks, Inc. All Rights Reserved. 28

45. DVC
Adopt

DVC continues to be our tool of choice for managing experiments in data science projects. The fact
that it’s Git-based makes it a known turf for developers to bring engineering practices to the data
science ecosystem. DVC’s opinionated view of a model checkpoint carefully encapsulates a training
data set, a test data set, model hyperparameters and the code. By making reproducibility a
first-class concern, it allows the team to time travel across various versions of the model. Our teams
have successfully used DVC in production to enable continuous delivery for ML (CD4ML); it can be
plugged in with any type of storage (including AWS S3, Google Cloud Storage, MinIO and Google
Drive). However, with data sets getting bigger, file system–based snapshotting could become
particularly expensive. When the underlying data is changing rapidly, DVC on top of a good versioned
storage allows tracking model drifts over a period of time. Our teams have effectively used DVC on
top of data storage formats like Delta Lake which optimizes versioning (COW). A majority of our data
science teams set up DVC as a day zero task while they bootstrap a project; for this reason we’re
happy to move it to Adopt.

46. Akeyless
Trial

As more organizations adopt cloud computing, many are starting to integrate multiple cloud providers
simultaneously to maximize flexibility and minimize vendor lock-in. However, managing keys and
access controls across multiple cloud providers can be a significant challenge, leading to increased
complexity and security risks. Akeyless is a centralized, cloud-based platform that provides unified
secrets management with a range of advantages for managing secrets and sensitive data. It
integrates seamlessly with different providers, simplifying the management of secrets and access
controls to monitor and control who has access to sensitive data; with encryption, access controls,
multi-factor authentication and other security mechanisms it ensures only authorized users are able to
access sensitive data. Additionally, it provides an intuitive interface for administration and monitoring,
providing a less complex and more scalable developer and administration experience.

47. Apicurio Registry
Trial

Within any organization, API producers and consumers need to stay in sync about the schemas that
will be used for communication among them. Especially as the number of APIs and related producers
and consumers grow in the organization, what may start with simply passing around schemas among
teams will start to hit scaling challenges. Faced with this issue, some of our teams have turned to
Apicurio Registry, an open-source, centralized registry for various types of schemas and API artifacts,
including OpenAPI specifications and Protobuf and Avro schemas. Apicurio Registry allows users to
interact with it through a UI as well as a REST API and a Maven plugin. It also has the option to enforce
schema evolution restrictions, such as backward compatibility. Moreover, when it comes to working
with Kafka clients, Apicurio Registry is compatible with Confluent Schema Registry. While our teams
have found Confluent Schema Registry’s documentation more helpful, Apicurio Registry meets their
needs for a source of truth for various schemas.

Tools

https://dvc.org/
https://www.thoughtworks.com/radar/tools/git
https://www.thoughtworks.com/radar/techniques/versioning-data-for-reproducible-analytics
https://www.thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://www.thoughtworks.com/radar/platforms/minio
https://www.thoughtworks.com/radar/platforms/delta-lake
https://en.wikipedia.org/wiki/Copy-on-write
https://www.akeyless.io/
https://www.apicur.io/registry/
https://www.thoughtworks.com/radar/platforms/apache-kafka

© Thoughtworks, Inc. All Rights Reserved. 29

48. EventCatalog
Trial

Enterprises now often use event streaming as the source of truth and as an information-sharing
mechanism in microservices architectures. This creates the need to standardize event types and
share those standards across the enterprise. Event schema registries are commonly deployed but
the existing offerings tend to be specialized to a single broker such as Apache Kafka or Azure Event
Hub. They also fall short of conveying rich documentation about event types that goes beyond simple
schema definitions. EventCatalog is an open-source project that provides something we often see
businesses building for themselves: a widely accessible repository of documentation for events and
schemas. These describe the role the events play in the business, where they belong in a business
domain model and which services subscribe and publish them. If you’re looking for a way to publish
event documentation to your organization, this tool might save you the trouble of building it yourself.

49. FOSSA
Trial

FOSSA is an open-source compliance tool that helps developers and teams determine which
open-source components their code relies on and which licenses these components are released
under. This information is essential for ensuring compliance with various open-source licenses and
maintaining the Software Bill of Materials. FOSSA integrates with dependency management tools of
various tech stacks to identify which open-source components are used in a project. It also highlights
any license issues based on the organization’s policies and generates reports of the same. Some key
features of FOSSA include its ability to integrate with development workflows, such as the CI, and to
perform real-time compliance monitoring. Many of our clients and teams have found FOSSA to be a
valuable and effective tool.

50. Gitleaks
Trial

Gitleaks is an open-source SAST (static application security testing) command line tool for detecting
and preventing hardcoded secrets like passwords, API keys and tokens in Git repositories. It can
be used as a Git pre-commit hook or in the CI/CD pipeline. Our teams found Gitleaks to be more
sensitive than some of the other secret-scanning tools. Gitleaks utilizes regular expressions and
entropy string coding to detect secrets. In our experience, the flexibility to supply custom regex
along with entropy coding allowed the teams to better categorize secrets based on their needs. For
example, instead of categorizing all API keys as “generic-api-key,” it allowed categorization as specific
“cloud provider key.”

51. Helmfile
Trial

Helmfile is an open-source command line tool and a declarative specification for managing and
installing a collection of Helm charts. You can use it to help with version control of the Helm values
files, the charts used and other overrides. It enables CI/CD workflows with Helm charts and helps
create reproducible environments. We’ve used Helmfile to manage complex deployments with multiple
dozens of Helm charts and found it simplifies the deployment workflow.

Tools

https://www.thoughtworks.com/radar/techniques/event-streaming-as-the-source-of-truth
https://www.thoughtworks.com/radar/techniques/microservices
https://www.thoughtworks.com/radar/platforms/apache-kafka
https://learn.microsoft.com/en-us/azure/event-hubs/schema-registry-overview
https://learn.microsoft.com/en-us/azure/event-hubs/schema-registry-overview
https://www.eventcatalog.dev/
https://fossa.com/product/open-source-license-compliance
https://www.thoughtworks.com/radar/techniques/software-bill-of-materials
https://github.com/gitleaks/gitleaks
https://www.thoughtworks.com/radar/tools/git
https://en.wikipedia.org/wiki/Entropy_coding
https://github.com/helmfile/helmfile
https://www.thoughtworks.com/radar/tools/helm

© Thoughtworks, Inc. All Rights Reserved. 30

52. IBM Equal Access Accessibility Checker
Trial

Defects are cheaper to fix when they’re caught early. That’s why we always try to get the fastest
possible feedback to developers in the form of static analysis, unit tests or end-to-end tests run in
the local environment. Accessibility is no exception to this and that’s why we’ve featured tools such
as Lighthouse, axe-core and axe Linter in the past. When it comes to automatically testing web
pages that are already deployed in production, one of our teams chose instead to go with IBM Equal
Access Accessibility Checker in a head-to-head comparison. Although we’re still in the process of
assessing the results, we can say that it offers an efficient way to test pages once they’ve been
deployed. We emphasize that this should be used to augment, not replace, early automated testing
by the developer. The tool is distributed under a Creative Commons license and is free to use under
those restrictions.

53. Ktlint
Trial

The Kotlin ecosystem continues to evolve, and our teams report positive experiences with Ktlint, a
simple and easy-to-configure linter and formatter for Kotlin code. We like opinionated and automated
code formatting as it lets developers focus more on what the code does rather than how it looks;
this tool enables development teams to maintain consistency and readability in their codebases
efficiently, reducing the likelihood of messy merges due to formatting issues. Ktlint can be easily
configured to run in pre-commit hooks, targeting only the files with changes and resulting in faster
integration processes.

54. Kubeflow
Trial

Kubeflow is a Kubernetes-native machine learning (ML) platform that simplifies build, train and
deploy lifecycles of models to diverse infrastructure. We’ve extensively used Pipelines to encode
ML workflows for several models across experimentation, training and serving use cases. Besides
Pipelines, Kubeflow ships with multiple components, among which we find hyperparameter tuning
with Katib and multi-tenancy to be quite useful.

55. Mend SCA
Trial

Mend SCA (software composition analysis), previously Whitesource, helps detect open-source
software dependencies by identifying if they are up to date, contain security flaws or have licensing
requirements. Our teams have had good experience with integrating Mend SCA in their paths to
production. Right from IDE integration, raising an automatic PR based on an identified issue to
integrating into the CI/CD pipeline, this tool offers a great developer experience. Other popular SCA
tools, such as Snyk, are comparable and also worth exploring for your security needs.

Tools

https://www.thoughtworks.com/radar/tools/lighthouse
https://www.thoughtworks.com/radar/tools/axe-core
https://thoughtworks.com/radar/tools/axe-linter
https://www.ibm.com/able/toolkit/verify/automated/
https://www.ibm.com/able/toolkit/verify/automated/
https://www.thoughtworks.com/radar/languages-and-frameworks/kotlin
https://github.com/pinterest/ktlint
https://www.thoughtworks.com/radar/techniques/opinionated-and-automated-code-formatting
https://www.thoughtworks.com/radar/techniques/opinionated-and-automated-code-formatting
https://www.kubeflow.org/
https://www.thoughtworks.com/radar/platforms/kubernetes
https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/
https://www.kubeflow.org/docs/components/katib/
https://www.kubeflow.org/docs/components/multi-tenancy/
https://www.mend.io/sca/
https://www.thoughtworks.com/radar/tools/snyk

© Thoughtworks, Inc. All Rights Reserved. 31

56. Mozilla SOPS
Trial

Our advice when it comes to secrets management has always been to decouple it from source
code. However, teams are often presented with a tradeoff between full automation (in the spirit of
infrastructure as code) versus a few manual steps (using tools like vaults) for managing, seeding and
rotating seed secrets. For instance, our teams use SOPS to manage seed credentials for bootstrapping
infrastructure. In some situations, however, it’s impossible to remove secrets from legacy code
repositories. For such needs, we found Mozilla SOPS to be a good choice for encrypting secrets in text
files. SOPS integrates with cloud-managed keystores such as AWS and GCP Key Management Service
(KMS) or Azure Key Vault as sources of encryption keys. It also works
cross-platform and supports PGP keys.

57. Ruff
Trial

Ruff is a new linter for Python. For us, the question is not whether to use a linter or not but which
linter to use, and there are several choices for Python. Ruff stands out for two reasons: its out-of-box
experience and its speed. It has over 500 rules built in and readily replaces Flake8, including many of
that linter’s plug-ins. The claims by the team behind Ruff about its performance are borne out by our
experience. It really is at least an order of magnitude faster than other linters, which is a huge benefit
because it helps reduce build times on large codebases.

58. Soda Core
Trial

Soda Core is an open-source data quality and observability tool. Our teams have used it to validate
data as it arrives in a system, before and after transformations, and set up automated monitoring
checks for anomalies. We’re happy with SodaCL, the DSL for writing data checks in Soda Core, as it
helps team members other than data engineers write quality checks. Overall, our experience using
Soda Core to find and resolve data issues at scale has been positive.

59. Steampipe
Trial

Steampipe is an open-source tool that lets you instantly query cloud services like AWS, Azure and
GCP with SQL. With 100+ plugins and built-in support for creating dashboards, Steampipe makes it
trivial to connect live cloud configuration data with internal or external data sets and create security or
compliance dashboards. We’ve enjoyed working with Steampipe and created several such dashboards
with AWS cloud configurations.

Tools

https://www.thoughtworks.com/radar/techniques/decoupling-secret-management-from-source-code
https://www.thoughtworks.com/radar/techniques/decoupling-secret-management-from-source-code
https://www.thoughtworks.com/radar/techniques/infrastructure-as-code
https://github.com/mozilla/sops
https://github.com/charliermarsh/ruff
https://www.soda.io/core
https://docs.soda.io/soda-cl/soda-cl-overview.html
https://steampipe.io/
https://hub.steampipe.io/plugins
https://steampipe.io/docs/mods/writing-dashboards

© Thoughtworks, Inc. All Rights Reserved. 32

60. Terraform Cloud Operator
Trial

More and more teams are using the Kubernetes Operators pattern to manage their Kubernetes
clusters. We used to recommend Crossplane for this, and now we have an alternative tool, Terraform
Cloud Operator for Kubernetes. This tool integrates Terraform Cloud and Kubernetes by extending
the Kubernetes control plane to enable lifecycle management of cloud and on-premise infrastructures
through Kubernetes manifests. Our team uses it to provision resources from Kubernetes namespaces
and RoleBindings to cloud database instances and other SaaS resources. We quite like it because
it leverages the Terraform module, which is a more familiar abstraction layer for us to operate
cloud resources.

61. TruffleHog
Trial

TruffleHog is an open-source SAST (static application security testing) tool for detecting secrets in
various sources. While GitHub and GitLab repositories are the most popular use cases, it can also
be used to scan cloud storage buckets like S3 and GCS, local files and directories and CircleCI logs.
Developers can set up TruffleHog as a pre-commit hook or scan the history of existing repositories in
an entire GitHub organization to detect secrets. The tool supports detecting custom regex patterns,
which have been found to be quite useful even in its current alpha stage. TruffleHog also has an
enterprise version, but our devs have found the open-source version easy to set up and sufficient for
the most common use cases. The tool has a very active community who regularly adds features.

62. Typesense
Trial

Typesense is an open-source, typo-tolerant search engine optimized for low-latency and high-
performance search experiences. If you’re building a latency-sensitive search application with
a search index size that can fit in memory, Typesense is a powerful alternative. Our teams use
Typesense in high availability multi-node clusters to distribute workload and ensure critical search
infrastructure is resilient. They had a good experience with Typesense in production, which is why
we’ve moved it to Trial.

63. Vite
Trial

Vite, a front-end build tool, has continued to mature and grow in popularity since we featured it in the
Assess ring in the previous Radar. It is rapidly becoming the default choice among our teams when
starting a new front-end project. Vite provides a set of defaults for building, bundling and managing
dependencies in applications that depend on ES modules in the browser. Because it takes advantage
of the native speed of esbuild and the Rollup bundler, Vite significantly improves the front-end
developer experience. Moreover, when used with React, Vite offers an attractive alternative to the
stalwart but nearly defunct Create React App. Vite relies on ES modules, and unlike most older tools,
it doesn’t provide shimming or polyfills, which means you need a different strategy for older browsers
that don’t support ES modules. In cases where older browsers had to be supported, some of our
teams import polyfills at the module level so that Vite can be used consistently across environments.

Tools

https://www.thoughtworks.com/radar/tools/kubernetes-operators
https://www.thoughtworks.com/radar/tools/crossplane
https://github.com/hashicorp/terraform-k8s
https://github.com/hashicorp/terraform-k8s
https://github.com/trufflesecurity/trufflehog
https://www.thoughtworks.com/radar/platforms/circleci
https://github.com/typesense/typesense
https://vitejs.dev/
https://www.thoughtworks.com/radar/tools/esbuild
https://rollupjs.org/
https://vitejs.dev/guide/why.html
https://hackernoon.com/create-react-app-is-dead-here-are-some-alternatives

© Thoughtworks, Inc. All Rights Reserved. 33

64. axe Linter
Assess

It’s becoming increasingly easy for developers to catch accessibility issues early in the
development process. While tools like axe-core scan code for accessibility issues in your pipelines,
the axe Linter VSCode extension helps find them even before that, while writing code. The vast
majority of accessibility issues fall into categories that could be prevented by automated testing and
using live feedback linters like this.

65. ChatGPT
Assess

ChatGPT is an interesting tool that has the potential to be useful for various aspects of the software
creation process. As a large language model (LLM) that has “read” billions of web pages, ChatGPT
can provide additional perspectives and assist with different tasks, from generating ideas and
requirements to creating code and tests. Its ability to work across multiple parts of the software
lifecycle makes it a versatile tool that might improve efficiency and reduce errors in the development
process. GPT4, the LLM that powers ChatGPT, now also has the ability to integrate with external tools
such as a knowledge management repository, sandboxed coding environment or web search. For now,
we think that ChatGPT is best used as an input to a process, such as helping with a first draft of a
story or the boilerplate for a coding task, rather than a tool that produces “fully baked” results.

There are concerns around intellectual property and data privacy with these AI tools, including some
unresolved legal questions, so we recommend organizations seek advice from their legal teams before
use. Some of our clients have already begun experimenting with ChatGPT across various stages of
the software lifecycle, and we encourage others to explore the tool and assess its potential benefits.
We expect that, like GitHub Copilot, a “for business” offering will soon be available which may ease
intellectual property concerns.

66. DataFusion
Assess

DataFusion is a part of the data community’s exploration of Rust’s performance, memory safety and
concurrency features applied to data processing. It shares similarities with Polars, namely a familiar
DataFrame API in Rust (with Python bindings), the use of Apache Arrow under the hood and SQL
support. Even though it’s primarily designed for single-process execution, distributed processing
support is in the works within Ballista. We think the Rust libraries for data processing are an evolving
space worth following and exploring, and DataFusion is a part of it.

Tools

https://www.thoughtworks.com/radar/tools/axe-core
https://www.deque.com/axe/linters/
https://openai.com/blog/chatgpt
https://www.thoughtworks.com/radar/tools/github-copilot
https://github.com/apache/arrow-datafusion
https://www.thoughtworks.com/radar/languages-and-frameworks/rust
https://www.thoughtworks.com/radar/languages-and-frameworks/polars
https://arrow.apache.org/
https://github.com/apache/arrow-ballista

© Thoughtworks, Inc. All Rights Reserved. 34

67. Deepchecks
Assess

As machine learning finds its way into the mainstream, practices are maturing around automatically
testing models, validating training data and observing model performance in production. Increasingly,
these automated checks are being incorporated into continuous delivery pipelines or run against
production models to detect drift and model performance. A number of tools with similar or
overlapping capabilities have emerged to handle various steps in this process (Giskard and Evidently
are also covered in this volume). Deepchecks is another of these tools that’s available as an open-
source Python library and can be invoked from pipeline code through an extensive set of APIs.
One unique feature is its ability to handle either tabular or image data with a module for language
data currently in alpha release. At the moment, no single tool can handle the variety of tests and
guardrails across the entire ML pipeline. We recommend assessing Deepchecks for your particular
application niche.

68. Design token translation tools
Assess

Design tokens are a useful mechanism for defining standard elements in design systems. But, keeping
those design elements consistent across media such as mobile apps or web frameworks is an
increasingly formidable task. Design token translation tools simplify this problem by organizing and
automating transformation from the token description (in YAML or JSON) into the code that actually
controls rendering in a given medium such as CSS, React components or HTML. Style Dictionary is an
open-source example that is widely used and integrates well into automated build pipelines, but there
are also commercial alternatives such as Specify.

69. Devbox
Assess

Devbox provides an approachable interface for creating reproducible, per-project development
environments leveraging the Nix package manager. Our teams use it to eliminate version and
configuration mismatches in their development environments, and they like it for its ease
of use. Devbox supports shell hooks, custom scripts and devcontainer.json generation for
integration with VSCode.

70. Evidently
Assess

Evidently is an open-source Python tool designed to help build monitoring for machine learning
models to guarantee their quality and stable production operations. It can be used at various stages
of a model lifecycle: as a dashboard to review the model in a notebook, as part of a pipeline or as a
monitoring service after deployment. With a particular focus on model drift detection, Evidently also
offers features such as model quality, data quality inspection and target drift detection. In addition, it
has many built-in metrics, associated visualizations and tests which are easily combined into a report,
dashboard or a test-driven pipeline.

Tools

https://www.thoughtworks.com/radar/tools/giskard
https://www.thoughtworks.com/radar/tools/evidently
https://docs.deepchecks.com/stable/getting-started/welcome.html
https://www.thoughtworks.com/radar/techniques/design-tokens
https://www.thoughtworks.com/radar/techniques/design-systems
https://design-tokens.github.io/community-group/format/#dfn-translation-tool
https://amzn.github.io/style-dictionary/#/
https://specifyapp.com/
https://www.jetpack.io/devbox/
https://containers.dev/
https://www.evidentlyai.com/

© Thoughtworks, Inc. All Rights Reserved. 35

Tools

71. Giskard
Assess

Giskard is an open-source tool designed to help organizations build more robust and ethical AI models
by providing quality assurance capabilities with a focus on explainability and fairness. It facilitates
cooperation between technical and nontechnical stakeholders, allowing them to evaluate models
collaboratively and establish acceptance criteria based on bias avoidance and other essential quality
metrics. Giskard ensures model outcomes are better aligned with business objectives and helps to
solve quality issues before production deployment.

72. GitHub Copilot
Assess

GitHub Copilot is an AI coding assistant, created by a collaboration between Microsoft and OpenAI.
It uses machine learning models to generate suggestions based on the context of what a developer
is working on. It features strong IDE integration and uses an existing codebase and editor context to
create suggestions. Despite being billed as “your AI pair programmer” we would not call what it does
“pairing” — we’d probably describe it as a kind of supercharged, context-sensitive Stack Overflow.
When it correctly predicts what a developer is trying to do, it can be a powerful tool for getting
stuff done. Like all LLM-based AIs, though, it has a tendency to hallucinate the use of plausible but
nonexistent APIs and may introduce bugs through slightly faulty algorithms. We’ve had success
generating code at the line, block and method level, as well as creating tests or infrastructure
configurations. Interestingly, it works best when you use good naming practices, so it encourages
more readable code.

AI tool capabilities are advancing rapidly, and we think it’s sensible for organizations to try them.
Some sales pitches for Copilot have claimed very high efficiency gains, but we remain skeptical:
after all, writing code isn’t the only thing that developers spend time on, and it’s notoriously difficult
to measure developer productivity in the first place. That said, Copilot is a fairly inexpensive tool; if
it offers any productivity gain at all, it’s probably worth it. Copilot X — in preview as of this writing
— offers additional functionality and integration within a software creation workflow. Copilot has a
“for business” offering, which provides more clarity around intellectual property issues as well as the
ability to manage tool features centrally across an organization. We think these features are critical for
enterprise adoption.

73. iamlive
Assess

Creating exactly the minimum viable AWS IAM policies we want, according to the principle of least
privilege, can be a long journey of trial and error. iamlive can shorten that journey considerably. It
monitors the AWS CLI calls made from a machine and determines the policies needed to execute
those calls. The tool generates a policy document with statements, actions, principals and resources
that can be used as a good starting point. We’ve found it particularly useful to create policies needed
in CI/CD pipelines that provision infrastructure, reducing the usual back and forth after a Terraform run
fails because the IAM role’s policy is insufficient.

https://www.giskard.ai/
https://github.com/features/copilot
https://github.com/features/preview/copilot-x
https://docs.github.com/en/enterprise-cloud@latest/copilot/overview-of-github-copilot/about-github-copilot-for-business
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://github.com/iann0036/iamlive
https://www.thoughtworks.com/radar/tools/terraform

© Thoughtworks, Inc. All Rights Reserved. 36

Tools

74. Kepler
Assess

Measuring energy consumption is an important step for teams to reduce the carbon footprint of their
software. Cloud Carbon Footprint (CCF) estimates energy based on billing and usage data retrieved
from cloud APIs. Kepler — short for Kubernetes-based Efficient Power Level Exporter — goes one
step further: it uses software counters via RAPL, ACPI and nvml to measure power consumption
by hardware resources and employs an eBPF-based approach to attribute power consumption to
processes, containers and Kubernetes pods. Power usage is then converted to energy estimates using
a custom ML model and data from the SPEC Power benchmark. Finally, pod-level energy consumption
reporting is made available as Prometheus metrics. In cases where Kubernetes is running on virtual
machines, for example when not using bare metal instances, Kepler uses cgroups to estimate energy
consumption. We’ve had significant experience with CCF and can attest to its usefulness, but we’re
intrigued by the Kepler project’s approach.

75. Kubernetes External Secrets Operator
Assess

Kubernetes External Secrets Operator allows external secret providers to be integrated with
Kubernetes. It reads from the external provider API and injects the result into a Kubernetes Secret.
The operator works with a large variety of secret management tools, including some we’ve featured
in previous editions of the Radar. Our teams have found it simplified the use of secrets when working
with Kubernetes by allowing the use of a single store across a whole project.

76. Kubeshark
Assess

Kubeshark is an API traffic viewer for Kubernetes. Until November 2022, it was known as Mizu. Unlike
other tools, Kubeshark does not require instrumentation or code changes. It runs as a DaemonSet to
inject a container at the node level in your Kubernetes cluster and performs tcpdump-like operations.
We find it useful as a debugging tool, as it can observe all API communications across multiple
protocols (REST, gRPC, Kafka, AMQP and Redis) in real time.

77. Obsidian
Assess

Knowledge management is critical for tech workers, as we need to be constantly learning and staying
up to date with the latest technology developments. Recently, tools such as Obsidian and Logseq
have emerged in the category of note-taking tools that support linking notes to form a knowledge
graph, while storing them in plain markdown files in a local directory, thus letting users own their data.
These tools help users organize and link their notes in a flexible, nonlinear way.

Obsidian has a rich repository of community plugins. Some that have caught our attention, in
particular, are Canvas, akin to a local version of Miro or Mural, and Dataview, which effectively treats
your notes as a database and provides a query language for filtering, sorting and extracting data from
your markdown notes.

https://www.thoughtworks.com/radar/tools/cloud-carbon-footprint
https://github.com/sustainable-computing-io/kepler
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://en.wikipedia.org/wiki/ACPI
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.thoughtworks.com/radar/platforms/ebpf
https://www.spec.org/power_ssj2008/
https://www.thoughtworks.com/radar/tools/prometheus
https://sustainable-computing.io/usage/trouble_shooting/#kepler-energy-metrics-are-zeroes
https://github.com/external-secrets/external-secrets
https://www.thoughtworks.com/radar/platforms/kubernetes
https://kubeshark.co/
https://www.thoughtworks.com/radar/platforms/kubernetes
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.thoughtworks.com/radar/platforms/apache-kafka
https://www.thoughtworks.com/radar/platforms/redis
https://obsidian.md/
https://logseq.com/
https://obsidian.md/canvas
https://github.com/blacksmithgu/obsidian-dataview

© Thoughtworks, Inc. All Rights Reserved. 37

Tools

78. Ory Kratos
Assess

We’ve already assessed Ory Hydra as a self-hosted OAuth2 solution, and the feedback from the
team has been good. This time, we turn to Ory Kratos, an API-first identity and user management
system that’s developer friendly and easy to customize. It already provides common functions we
want to achieve in an identity management system, including self-service login and registration,
multi-factor authentication (MFA/2FA), account verification and account recovery. Like Hydra,
Kratos is headless and requires developers to build the UI themselves, which gives the team more
flexibility. Developers can also customize identity schema to fit different business contexts. Kratos has
no external dependencies other than the database, and it’s easy to deploy and scale in different cloud
environments. If you need to build a user management system, we recommend you give Kratos a try.

79. Philips’s self-hosted GitHub runner
Assess

While GitHub Actions runners cover a wide range of the most common runtimes, sometimes you need
something that is more specific to your particular use case, such as a less common language runtime
or a particular hardware configuration. That’s when you need a self-hosted runner. Philips’s self-hosted
GitHub runner is a Terraform module that lets you spin up custom runners on AWS EC2 spot instances.
The module also creates a set of Lambdas to make up for the fact that you lose some of GitHub
Actions’ lifecycle management when you self-host runners. They do the heavy lifting for scaling
runners up and down as needed. That helps manage costs and allows you to make runners ephemeral,
which helps improve repeatability and security. When you do need to self-host runners, you might
miss a lot of things when building custom runners from scratch. Look for tools like this one instead.

https://www.thoughtworks.com/radar/platforms/hydra
https://github.com/ory/kratos
https://www.ory.sh/docs/ecosystem/software-architecture-philosophy
https://www.thoughtworks.com/radar/platforms/github-actions
https://github.com/philips-labs/terraform-aws-github-runner
https://github.com/philips-labs/terraform-aws-github-runner

© Thoughtworks, Inc. All Rights Reserved.

Languages and
Frameworks

Adopt
80. Gradle Kotlin DSL
81. PyTorch

Trial
82. dbt-unit-testing
83. Jetpack CameraViewfinder
84. Jetpack DataStore
85. Mikro ORM
86. Per-app language preferences
87. Quarto
88. River
89. Stencil
90. Synthetic Data Vault
91. Vitest

Assess
92. .NET 7 Native AOT
93. .NET MAUI
94. dbt-expectations
95. Directus
96. Ferrocene
97. Flutter for embedded
98. Fugue
99. Galacean Engine
100. LangChain
101. mljar-supervised
102. nanoGPT
103. pandera
104. Qwik
105. SolidJS
106. Turborepo
107. WebXR Device API

Hold
—

Hold HoldAssess AssessTrial TrialAdopt Adopt

1

4

21

2326

31
32

33

27

34

35

36

37

38

44

39

40

41 42
43

28

2

8

7

5

10

11

20

12

13

14

15

16

17

22

18
19

3
76

6159 60

57

55

52
50

47
48

64 65

66

67

68 69
70

71

72

73 74

75

78

77

79

53

51
49

46

92 93
94 95

96 97

98 99

100
101

102 103

104

105

106

107

83

82

84
85

86

91

89

87

24

25

30

29

80

88

90
81

6

9

45

56 58

62 63

54

New Moved in/out No change

© Thoughtworks, Inc. All Rights Reserved. 39

80. Gradle Kotlin DSL
Adopt

Our teams now view Gradle Kotlin DSL as the default for starting new projects using Gradle, preferring
it over Groovy. Teams already using Groovy should consider migration. Kotlin provides better support
for refactoring and simpler editing in IDEs, and our teams report that it produces code that is easier to
read and maintain. Given some IDEs now support migration, it should be relatively quick to experiment
with replacing existing Groovy. In some situations Kotlin might be slower than Groovy; however, for
many projects, this is unlikely to impact the team.

81. PyTorch
Adopt

PyTorch continues to be our choice of machine learning (ML) framework. Most of our teams prefer
PyTorch over TensorFlow. PyTorch exposes the inner workings of ML that TensorFlow hides, making
it easier to debug. With dynamic computational graphs, model optimization is much easier compared
to any other ML framework. The extensive availability of State-of-the-Art (SOTA) models and the
ease of implementing research papers make PyTorch stand out. When it comes to graph ML, PyTorch
Geometric is a more mature ecosystem and our teams have had great experiences with it. PyTorch
has also gradually bridged gaps when it comes to model deployment and scaling; our teams have
used TorchServe to serve pretrained models successfully in production, for example. With many
teams defaulting to PyTorch for their end-to-end deep-learning needs, we happily recommend
adopting PyTorch.

82. dbt-unit-testing
Trial

dbt-unit-testing is a dbt package that allows writing unit tests for a model and its logic by mocking its
dependencies. This brings the engineering rigor of fast development feedback to the data ecosystem.
Our teams use this package with Snowflake to practice test-driven development (TDD), although it
was only feasible for simple transformations. The library certainly has rough edges when it comes to
debugging failed test runs, but the ability to write unit tests on transformers as we develop the model
provided a neat developer experience.

83. Jetpack CameraViewfinder
Trial

When adding camera capabilities to Android apps, developers had to look out for pitfalls. The recently
introduced Jetpack CameraViewfinder API significantly improves the developer experience in this
area. Internally it uses either a TextureView or SurfaceView to display the camera feed and applies
transformations to correctly display the viewfinder, fixing aspect ratio, scale and rotation where
necessary. Optimized layouts for foldable devices are provided, too. While not a major feature, we
highlight it here to ensure teams are aware of its existence.

Languages and Frameworks

https://www.thoughtworks.com/radar/tools/gradle
https://www.thoughtworks.com/radar/languages-and-frameworks/groovy
https://www.thoughtworks.com/radar/languages-and-frameworks/kotlin
https://pytorch.org/
https://www.thoughtworks.com/radar/languages-and-frameworks/tensorflow
https://huggingface.co/models
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/pytorch/serve
https://github.com/EqualExperts/dbt-unit-testing
https://www.thoughtworks.com/radar/tools/dbt
https://www.thoughtworks.com/radar/platforms/snowflake
https://www.thoughtworks.com/insights/blog/test-driven-development-best-thing-has-happened-software-design
https://android-developers.googleblog.com/2022/11/introducing-camera-viewfinder.html

© Thoughtworks, Inc. All Rights Reserved. 40

84. Jetpack DataStore
Trial

Jetpack DataStore is a new data storage solution to store data asynchronously, consistently and
transactionally. It has two implementations: Preferences DataStore for untyped key-value pairs and
Proto DataStore for complex data types using Protobufs. By default it is used with Kotlin coroutines
and Flow but additional support for RXJava 2 and 3 is available. The documentation recommends you
consider migrating to DataStore if you’re currently using SharedPreferences, and we agree with that
recommendation.

85. Mikro ORM
Trial

Mikro ORM is an object-relational mapping (ORM) framework that has an interesting TypeScript-
centric approach. By leveraging TypeScript throughout the entire stack, it offers a consistent
development experience from browser to backend, making it easier for developers to write and
maintain code. Notably, Mikro ORM’s performance is excellent, enabling rapid query execution and
minimizing latency. While Mikro ORM offers appealing features, it’s essential to keep in mind the
general caveats associated with object-relational mappers. ORM frameworks are often complex
and offer only a leaky abstraction over a relational data store, and so using one is always a
balance of trade-offs.

86. Per-app language preferences
Trial

Many people speak more than one language and use different languages in different contexts.
Devices and platforms that can run apps generally ask the user to select one language for the system
and then make the apps follow suit. For mobile phones, in particular, users may prefer certain apps
to run in a language other than the system’s language; Apple introduced a per-app language setting
in iOS a while ago. Android app developers, however, had to implement a custom solution within their
apps if they wanted to provide this option — until now. Android 13 introduced a new system setting,
per-app language preferences, and a public API, making it easier for developers to offer this feature.
For backward compatibility, equivalent APIs are available in AndroidX via AppCompatDelegate. We
encourage developers to replace their custom solutions and instead use this feature in their apps.

87. Quarto
Trial

Quarto is an open-source scientific and technical publishing system. With it, we can build
computational notebooks that allow you to write documents in markdown, embed code and emit that
code’s output into the final document. It can be used to create reproducible and customizable data
analysis reports, which can be easily shared in a variety of formats. Our data science teams used
Quarto to share data analysis reports containing visualizations (plots) and tables. They liked being
able to use R and Python to generate these dynamic reports and then export them as HTML to share
with stakeholders. If you’re looking to share your research and analysis within or outside of your
organization, we recommend evaluating Quarto.

Languages and Frameworks

https://developer.android.com/topic/libraries/architecture/datastore
https://www.thoughtworks.com/radar/languages-and-frameworks/kotlin
https://mikro-orm.io/
https://www.thoughtworks.com/radar/languages-and-frameworks/typescript
https://martinfowler.com/bliki/OrmHate.html
https://android-developers.googleblog.com/2022/11/per-app-language-preferences-part-1.html
https://quarto.org/
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/HTML

© Thoughtworks, Inc. All Rights Reserved. 41

88. River
Trial

At the heart of many approaches to machine learning lies the creation of a model from a set of training
data. Once a model is created, it can be used over and over again. However, the world isn’t stationary,
and often the model needs to change as new data becomes available. Simply re-running the model
creation step can be slow and costly. Incremental learning addresses this issue, making it possible
to learn from streams of data incrementally to react to change faster. As a bonus, the compute and
memory requirements are lower and predictable. Our practical experience with River continues to
be positive. Vowpal Wabbit, which can be an alternative, has a much steeper learning curve, and the
Scikit-like API offered by River makes River more accessible to data scientists.

89. Stencil
Trial

Stencil is a library that enables developers to build reusable Web Components using well-established
tools such as TypeScript, JSX and JSDoc. According to our teams’ experiences, Stencil is a very
good choice for building platform-agnostic design systems. For the few browsers that don’t support
modern browser features, Stencil ensures compatibility by polyfilling unsupported features and
APIs on demand.

90. Synthetic Data Vault
Trial

Synthetic Data Vault (SDV) is a synthetic data generation ecosystem of libraries that can learn the
distribution of a data set to generate synthetic data with the same format and statistical properties as
the source. In the past, we talked about the downsides of using production data in test environments.
However, the nuances of data distribution in production can hardly be replicated manually, resulting in
defects and surprises. We’ve had good experiences using SDV to generate large data for performance
testing. SDV fares well with modeling a single table. However, data generation time increases
considerably as the number of tables with foreign key constraints increases. Nonetheless, SDV offers
great promise for local performance testing. It’s a good tool for synthetic data generation and worth
considering for your testing needs.

91. Vitest
Trial

Vitest is a unit testing framework for JavaScript. Up to now, many teams have relied on Jest, but Jest
doesn’t play well with Vite, a modern front-end build tool. Using Jest and Vite together forced teams
to create two pipelines — one for build and development and one for unit testing — which required
tedious configuration of the pipelines with duplicate settings. These problems are solved with Vitest.
It is designed specifically for Vite and uses Vite as a bundler. As an additional feature, Vitest has
Jest-compatible APIs which makes it possible to use Vitest as a drop-in replacement for Jest in
various build setups. However, using Vite and Vitest together provides a better developer experience,
and although Vitest is fast, in our experience, it isn’t necessarily faster than using Jest.

Languages and Frameworks

https://medium.com/syncedreview/the-staggering-cost-of-training-sota-ai-models-e329e80fa82
https://riverml.xyz/dev/
https://www.thoughtworks.com/radar/languages-and-frameworks/vowpal-wabbit
https://stenciljs.com/
https://www.thoughtworks.com/radar/languages-and-frameworks/typescript
https://github.com/sdv-dev/SDV
https://www.thoughtworks.com/radar/techniques/production-data-in-test-environments
https://docs.sdv.dev/sdv/single-table-data/modeling
https://docs.sdv.dev/sdv/multi-table-data/modeling
https://vitest.dev/
https://www.thoughtworks.com/radar/languages-and-frameworks/jest
https://www.thoughtworks.com/radar/tools/vite

© Thoughtworks, Inc. All Rights Reserved. 42

92. .NET 7 Native AOT
Assess

.NET 7 Native AOT is a big step forward in a long line of approaches to deploying .NET applications
natively. It does away with IL and JIT at runtime entirely. Introduced in .NET 7, this improvement is
particularly significant for running .NET applications in serverless functions. This new deployment
option eliminates the cold start issue, which has been a persistent problem for .NET on serverless
platforms like AWS Lambda and Azure Functions. With Native AOT, you can generate a smaller
deployable binary than previous methods, resulting in faster cold start times. AWS has officially
embraced Native AOT, supporting it with their Amazon Lambda Tools. This new deployment option
brings .NET 7 on par with TypeScript/JavaScript in terms of cold start times, making it a viable option
for organizations with a largely .NET-oriented infrastructure.

93. .NET MAUI
Assess

.NET MAUI is a new cross-platform framework for creating native mobile and desktop apps with
C# and XAML. It allows the creation of apps that can run on Android, iOS, macOS and Windows
from a single shared codebase. However, as a new technology, the ecosystem around MAUI
is not as developed as React Native or other cross-system platforms, and it only supports C#.
Additionally, MAUI may face challenges encountered by organizations using Xamarin in the past,
including poor cross-platform tooling, mobile integration problems, developer availability and an
immature ecosystem.

While Microsoft announced their commitment to MAUI as an open-source, mobile-first framework
for mobile development, its success has yet to be proven. If you’re already using Xamarin, you may
want to assess MAUI as a potential upgrade; however, if C# or Xamarin isn’t part of your tool set yet,
you may want to approach MAUI with some caution until the technology is more widely adopted and
proven in the market.

94. dbt-expectations
Assess

dbt-expectations is an extension package for dbt inspired by Great Expectations. Data quality is an
important tenet of data governance, so when it comes to automated data governance, it’s important
to craft built-in controls that flag anomalies or quality issues in data pipelines. Just as unit tests run in
a build pipeline, dbt-expectations makes assertions during the execution of a data pipeline. In the dbt
world, you can run Great Expectations–style data quality tests on your warehouse directly within dbt.
Our teams have been exploring this, and it made sense to highlight it.

95. Directus
Assess

We’ve used Directus as a headless content management system (CMS). Although we have options
when it comes to headless CMS products, we needed a self-hosted solution with rich digital asset
management and content authoring workflows. In this evaluation we find Directus to be a good fit for
our needs; we quite like its event-driven data processing and automation via flows.

Languages and Frameworks

https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/
https://www.thoughtworks.com/radar/platforms/aws-lambda
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui
https://www.thoughtworks.com/radar/languages-and-frameworks/react-native
https://www.thoughtworks.com/radar/tools/xamarin
https://github.com/calogica/dbt-expectations/tree/0.8.2/
https://www.thoughtworks.com/radar/tools/dbt
https://www.thoughtworks.com/radar/tools/great-expectations
https://directus.io/headless-cms/
https://docs.directus.io/configuration/flows.html

© Thoughtworks, Inc. All Rights Reserved. 43

96. Ferrocene
Assess

The Rust language has been gaining popularity in recent years for its safety, performance and
concurrency features. However, certified Rust toolchains have been missing for applications in
safety-critical markets like automotive. This gap is being addressed by Ferrocene, a Rust compiler
toolchain. Ferrocene promises to be ISO26262 functional safety standard compliant for the electronic
systems in road vehicles; an effort to qualify the language and toolchain for use in such domains is
already underway. We’re excited by its progress and the availability of such safety-compliant tools will
certainly speed up the adoption of Rust in the automotive industry.

97. Flutter for embedded
Assess

Flutter for embedded makes it relatively easy to create and maintain a modern UI similar to mobile
apps but for embedded systems like human-machine interface (HMI) in cars, refrigerators and other
consumer appliances. This is made possible with Flutter now supporting custom embedders, which
allows portability to different platforms. The apps are written in the Dart programming language using
the Flutter SDK and ecosystem. We’ve been building prototypes with it — our developers love the dev
experience and our customers like the agility, speed and modern user experience that it brings.

98. Fugue
Assess

In data engineering we’re seeing a bewildering choice of tools and technologies. For less experienced
engineers especially, it can make sense to work with an abstraction layer to get into the tools, to focus
on the task at hand without having to learn several technology-specific APIs and to have the option
of switching underlying technologies without too much effort. Fugue is such an abstraction layer. It
provides a unified interface for distributed computing, which makes it possible to run Python, pandas
and SQL code on Spark, Dask, Ray and DuckDB with minimal rewrites. However, if your team has
already decided on a set of technologies, and if they’re familiar with their APIs and deep into tweaking
and tuning their backend systems, such an abstraction layer provides less value in our experience.

99. Galacean Engine
Assess

Galacean Engine is a web- and mobile-first interactive engine, designed to provide a seamless way
to render component-based architecture and animation in a mobile-friendly manner. With its focus
on lightweight and high-performance rendering, it has become an increasingly popular choice for
developers creating engaging mobile games. It’s a TypeScript-based engine that developers report
outperforms alternatives.

Languages and Frameworks

https://www.thoughtworks.com/radar/languages-and-frameworks/rust
https://ferrous-systems.com/ferrocene/
https://flutter.dev/multi-platform/embedded
https://www.thoughtworks.com/radar/languages-and-frameworks/flutter
https://www.thoughtworks.com/radar/languages-and-frameworks/google-dart
https://fugue-tutorials.readthedocs.io/
https://www.thoughtworks.com/radar/platforms/apache-spark
https://www.thoughtworks.com/radar/languages-and-frameworks/dask
https://www.thoughtworks.com/radar/platforms/duckdb
https://github.com/galacean/engine
https://thoughtworks.com/radar/languages-and-frameworks/typescript

© Thoughtworks, Inc. All Rights Reserved. 44

100. LangChain
Assess

LangChain is a framework for building applications with large language models (LLMs). These models
have triggered a race to incorporate generative AI in several use cases. However, using these LLMs in
isolation may not be enough — you have to combine them with your differentiated assets to build an
impactful product. LangChain fills this niche with some neat features, including prompt management,
chaining, data augmented generation and a rich set of agents to determine which actions to take
and in what order. We expect more tooling and frameworks to evolve with LLMs, and we recommend
assessing LangChain.

101. mljar-supervised
Assess

mljar-supervised is an AutoML Python package that assists with understanding and explaining tabular
data. Our data science teams are excited about it and use it to automate exploratory data analysis. It
abstracts the common way to preprocess the data, construct the machine learning (ML) models and
perform hyper-parameters tuning to find the best model. Explainability and transparency are important
tenets, and that’s where mljar-supervised shines. It allows you to see exactly how the ML pipeline is
constructed with a detailed markdown report for each ML model. It’s definitely an interesting AutoML
package that’s worth assessing for your ML needs.

102. nanoGPT
Assess

nanoGPT is a framework for training and fine-tuning medium-sized generative pretrained transformers
(GPT). The author, Andrej Karpathy, references Attention is All You Need and OpenAI’s GPT-3
papers to build a GPT from scratch using PyTorch. With all the hype around generative AI, we want
to highlight nanoGPT for its simplicity and focus on clearly articulating the building blocks of the
GPT architecture.

103. pandera
Assess

In previous Radars, we’ve featured data validation and testing platforms like Great Expectations
that can be used to validate assumptions and test the quality of incoming data used for training or
classification. Sometimes, though, all you need is a simple code library to implement tests and quality
checks directly in pipelines. pandera is a Python library for testing and validating data across a wide
range of frame types such as pandas, Dask or PySpark. pandera can implement simple assertions
about fields or hypothesis tests based on statistical models. The wide range of supported frame
libraries means tests can be written once and then applied to a variety of underlying data formats.
pandera can also be used to generate synthetic data to test ML models.

Languages and Frameworks

https://github.com/hwchase17/langchain
https://python.langchain.com/en/latest/use_cases/evaluation/data_augmented_question_answering.html
https://langchain.readthedocs.io/en/latest/modules/agents/agents.html
https://github.com/mljar/mljar-supervised
https://www.thoughtworks.com/radar/techniques/automated-machine-learning-automl
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2005.14165
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://www.thoughtworks.com/radar/languages-and-frameworks/pytorch
https://www.thoughtworks.com/radar/tools/great-expectations
https://github.com/unionai-oss/pandera
https://www.thoughtworks.com/radar/languages-and-frameworks/dask
https://www.thoughtworks.com/radar/techniques/synthetic-data-for-testing-models

© Thoughtworks, Inc. All Rights Reserved. 45

104. Qwik
Assess

One of the challenges of creating a rich, interactive browser-based experience is in minimizing
the time from first request to full user interactivity. When starting up, the application may need
to download large amounts of JavaScript to the browser or execute a lengthy process to restore
application state on the server. Qwik is a new front-end framework that serializes application state so
it can be rendered on the server without rehydrating and replaying application logic. This is achieved
through resumability, which involves pausing execution on the server to resume it on the client. Like
other newer front-end frameworks, such as Astro or Svelte, Qwik also speeds up initial page load
times by minimizing the amount of JavaScript to load. In Qwik’s case, the initial application download is
primarily HTML, with most JavaScript loaded dynamically on demand from a local cache, if possible.

105. SolidJS
Assess

SolidJS is a declarative JavaScript library for creating user interfaces. In the last year, we’ve seen
an increase in SolidJS’s visibility and popularity among developers, particularly those interested in
creating richer user interactions. SolidJS compiles its templates to real DOM nodes (instead of using
vDOM) and updates them with fine-grained reactions which reduces unnecessary DOM updates and
results in faster performance and a better user experience. It has a simple API and great support for
TypeScript, which can help catch errors during development. Another benefit of SolidJS is its small
bundle size, which is ideal for building fast and lightweight web applications and benefits a mobile-
first approach. SolidJS is a relatively new framework, so it doesn’t have as large of a community or
ecosystem as other frameworks. However, judging by the growing number of useful libraries and tools,
it seems to be growing in popularity. Its reactive update system, functional component model and
templating system make SolidJS an attractive choice to assess, and we’re seeing interest from several
teams and communities.

106. Turborepo
Assess

One of the topics that seems to perennially draw interest in our discussions is the issue of monorepos.
Some places have embraced them for the whole organization, while others have applied the concept
in certain narrow applications such as mobile applications or combined UI/BFF development.
Regardless of whether or where monorepos are appropriate, the industry seems to be revisiting
tools that can effectively manage large codebases and build them efficiently into deployable units.
Turborepo is a relatively new tool in this category that offers an alternative to Nx or Lerna for large
JavaScript or TypeScript codebases. One of the challenges with large repos is executing builds
quickly enough that they don’t interrupt developer flow or reduce efficiency. Turborepo is written in
Rust which makes it highly performant; it also builds incrementally and caches intermediate steps to
speed things up further. However, it does require changes to the developer workflow that take time
to learn and is probably best suited to large codebases with multiple independent builds where a
different approach is warranted. We’ve found that the documentation is sparse, leading some teams to
stick with more established tools for now. However, it’s worth assessing and seeing if Turborepo and
its newer companion, Turbopack (currently in beta), continue to evolve.

Languages and Frameworks

https://qwik.builder.io/
https://www.thoughtworks.com/radar/languages-and-frameworks/astro
https://www.thoughtworks.com/radar/languages-and-frameworks/svelte
https://www.solidjs.com/
https://www.thoughtworks.com/radar/languages-and-frameworks/typescript
https://turbo.build/repo
https://www.thoughtworks.com/radar/tools/nx
https://lerna.js.org/
https://www.thoughtworks.com/radar/languages-and-frameworks/rust
https://turbo.build/pack

© Thoughtworks, Inc. All Rights Reserved. 46

107. WebXR Device API
Assess

When working on the WebVR experimental API, it became clear that it would make more sense to have
a combined API for VR and AR. Rather than changing the WebVR API significantly, a new specification
was created: WebXR. At its core is the WebXR Device API which provides key capabilities for writing
VR and AR applications in a web browser. The API is extensive, and at the time of writing it isn’t
fully supported by all browsers. Our teams have used WebXR on several occasions, and we see the
benefits described by the Immersive Web Working Group. For prototypes, we especially like that the
experience is available immediately in a web browser. The development team doesn’t have to go
through an app-store process, and users can play with the experience without having to install an
app. Given the status of the API and the fact it’s hidden behind a feature toggle in some browsers, we
haven’t seen it used beyond proofs of concept and prototypes.

Languages and Frameworks

https://www.thoughtworks.com/radar/platforms/webvr
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://www.w3.org/TR/webxr/
https://caniuse.com/webxr
https://immersiveweb.dev/#benefitsofdoingxrontheweb

© Thoughtworks, Inc. All Rights Reserved. 47

Want to stay up to date with all
Radar-related news and insights?

Follow us on your favorite social channel
or become a subscriber.

Thoughtworks is a global technology consultancy
that integrates strategy, design and engineering
to drive digital innovation. We are 12,500+
people strong across 50 offices in 18 countries.
Over the last 25+ years, we’ve delivered
extraordinary impact together with our clients by
helping them solve complex business problems
with technology as the differentiator.

Subscribe now

https://thght.works/41VUYJa
https://thght.works/TWFB
https://thght.works/TWIN
https://thght.works/TWLI
https://thght.works/TWTW
https://thght.works/3ykOEND

	About the
Radar
	Radar at a glance
	Contributors
	Themes
	The Radar
	Techniques
	Platforms
	Tools
	Languages and Frameworks

