
TECHNOLOGY
RADAR
Our thoughts on the

technology and trends that
are shaping the future

MAY 2015
thoughtworks.com/radar

http://thoughtworks.com/radar

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 1

WHAT’S NEW?
Here are the trends highlighted in this edition:

INNOVATION IN ARCHITECTURE
Organizations have accepted that “cloud” is the de-facto platform of the future, and the benefits and flexibility it
brings have ushered in a renaissance in software architecture. The disposable infrastructure of cloud has enabled
the first “cloud native” architecture, microservices. Continuous Delivery, a technique that is radically changing how
tech-based businesses evolve, amplifies the impact of cloud as an architecture. We expect architectural innovation
to continue, with trends such as containerization and software-defined networking providing even more technical
options and capability.

A NEW WAVE OF OPENNESS AT MICROSOFT
Whilst Microsoft has dabbled in open-source in the past—including their open-source hosting platform CodePlex—
the company’s core assets continued to be proprietary and closely guarded secrets. Now, though, Microsoft seems
to be embracing a new strategy of openness, releasing large parts of the .NET platform and runtime as open-source
projects on GitHub. We’re hopeful that this could pave the way to Linux as a hosting platform for .NET, allowing the
C# language to compete alongside the current bevy of JVM-based languages.

SECURITY STRUGGLES CONTINUE IN THE ENTERPRISE
Despite increased attention on security and privacy, the industry hasn’t made much progress since the last Radar
and we continue to highlight the issue. Developers are responding with increased security infrastructure and tooling,
building automated test tools such as the Zed Attack Proxy into deployment pipelines. Such tools are of course only
part of a holistic approach to security, and we believe all organizations need to “raise their game” in this space.

CONTRIBUTORS
The Technology Radar is prepared by the ThoughtWorks Technology Advisory Board, comprised of:

Rebecca Parsons (CTO)

Martin Fowler(Chief Scientist)

Anne J Simmons

Badri Janakiraman

Brain Leke

Claudia Melo

Dave Elliman

Erik Doernenburg

Evan Bottcher

Hao Xu

Ian Cartwright

James Lewis

Jeff Norris

Jonny LeRoy

Mike Mason

Neal Ford

Rachel Laycock

Sam Newman

Scott Shaw

Srihari Srinivasan

Thiyagu Palanisamy

http://www.thoughtworks.com/profiles/rebecca-parsons
http://www.thoughtworks.com/profiles/martin-fowler
http://www.thoughtworks.com/profiles/anne-j-simmons
http://www.thoughtworks.com/profiles/badrinath-janakiraman
http://www.thoughtworks.com/profiles/brain-leke
http://www.thoughtworks.com/profiles/claudia-melo
http://www.thoughtworks.com/profiles/dave-elliman
http://www.thoughtworks.com/profiles/erik-dornenburg
http://www.thoughtworks.com/profiles/evan-bottcher
http://www.thoughtworks.com/profiles/xu-hao
http://www.thoughtworks.com/profiles/ian-cartwright
http://www.thoughtworks.com/profiles/ian-cartwright
http://www.thoughtworks.com/profiles/james-lewis
http://www.thoughtworks.com/profiles/jeff-norris
http://www.thoughtworks.com/profiles/jonny-leroy
http://www.thoughtworks.com/profiles/mike-mason
http://www.thoughtworks.com/profiles/neal-ford
http://www.thoughtworks.com/profiles/neal-ford
http://www.thoughtworks.com/profiles/rachel-laycock
http://www.thoughtworks.com/profiles/sam-newman
http://www.thoughtworks.com/profiles/scott-shaw
http://www.thoughtworks.com/profiles/srihari-srinivasan
http://www.thoughtworks.com/profiles/thiyagu-palanisamy

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 2

ABOUT THE TECHNOLOGY RADAR
ThoughtWorkers are passionate about technology. We build it, research it, test it, open source it, write about it, and
constantly aim to improve it – for everyone. Our mission is to champion software excellence and revolutionize IT. We
create and share the ThoughtWorks Technology Radar in support of that mission. The ThoughtWorks Technology
Advisory Board, a group of senior technology leaders in ThoughtWorks, creates the radar. They meet regularly to
discuss the global technology strategy for ThoughtWorks and the technology trends that significantly impact our
industry.

The radar captures the output of the Technology Advisory Board’s discussions in a format that provides value to a
wide range of stakeholders, from CIOs to developers. The content is intended as a concise summary. We encourage
you to explore these technologies for more detail. The radar is graphical in nature, grouping items into techniques,
tools, platforms, and languages & frameworks. When radar items could appear in multiple quadrants, we chose the
one that seemed most appropriate. We further group these items in four rings to reflect our current position on
them. The rings are:

Items that are new or have had significant changes since the last radar are represented as triangles, while items that
have not moved are represented as circles. We are interested in far more items than we can reasonably fit into a
document this size, so we fade many items from the last radar to make room for the new items. Fading an item does
not mean that we no longer care about it.

For more background on the radar, see thoughtworks.com/radar/faq

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

We feel strongly that the industry should be
adopting these items. We use them when
appropriate on our projects.

Worth pursuing. It is important to
understand how to build up this
capability. Enterprises should try
this technology on a project that can
handle the risk.

Worth exploring
with the goal of
understanding how
it will affect your
enterprise.

Proceed with
caution.

http://thoughtworks.com/radar/faq

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 3

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

THE RADAR
TECHNIQUES
ADOPT
1. Consumer-driven contract testing
2. Focus on mean time to recovery
3. Generated infrastructure diagrams
4. Structured logging

TRIAL
5. Canary builds
6. Datensparsamkeit
7. Local storage sync
8. NoPSD
9. Offline first web applications
10. Products over projects
11. Threat Modelling

ASSESS
12. Append-only data store
13. Blockchain beyond bitcoin
14. Enterprise Data Lake
15. Flux
16. Git based CMS/Git for non-code
17. Phoenix Environments
18. Reactive Architectures

HOLD
19. Long lived branches with Gitflow
20. Microservice envy
21. Programming in your CI/CD tool
22. SAFe™
23. Security sandwich
24. Separate DevOps team

PLATFORMS
ADOPT

TRIAL
25. Apache Spark
26. Cloudera Impala
27. DigitalOcean
28. TOTP Two-Factor Authentication

ASSESS
29. Apache Kylin
30. Apache Mesos
31. CoreCLR and CoreFX
32. CoreOS
33. Deis
34. H2O
35. Jackrabbit Oak
36. Linux security modules
37. MariaDB
38. Netflix OSS Full stack
39. OpenAM
40. SDN
41. Spark Photon/Spark Electron
42. Text it as a service / Rapidpro.io
43. Time series databases
44. U2F

HOLD
45. Application Servers
46. OSGi
47. SPDY

New or moved
No change

new

new

new
new

new

new
new

new
new

new

new

new

new
new

new

new

new

new

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 4

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

THE RADAR
TOOLS
ADOPT
48. Composer
49. Go CD
50. Mountebank
51. Postman

TRIAL
52. Boot2docker
53. Brighter
54. Consul
55. Cursive
56. GitLab
57. Hamms
58. IndexedDB
59. Polly
60. REST-assured
61. Swagger
62. Xamarin
63. ZAP

ASSESS
64. Apache Kafka
65. Blackbox
66. Bokeh/Vega
67. Gor
68. NaCl
69. Origami
70. Packetbeat
71. pdfmake
72. PlantUML
73. Prometheus
74. Quick
75. Security Monkey

HOLD
76. Citrix for development

LANGUAGES & FRAMEWORKS
ADOPT
77. Nancy

TRIAL
78. Dashing
79. Django REST
80. Ionic Framework
81. Nashorn
82. Om
83. React.js
84. Retrofit
85. Spring Boot

ASSESS
86. Ember.js
87. Flight.js
88. Haskell Hadoop library
89. Lotus
90. Reagent
91. Swift

HOLD
92. JSFNew or moved

No change

new

new

new
new

new

new

new
new
new

new

new
new

new
new

new

new

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 5

When two independently developed services are
collaborating, changes to the supplier’s API can cause
failures for all its consumers. Consuming services
usually cannot test against live suppliers since such
tests are slow and brittle (martinfowler.com/articles/
nonDeterminism.html#RemoteServices), so it’s best to
use Test Doubles (martinfowler.com/bliki/TestDouble.
html), leading to the danger that the test doubles get
out of sync with the real supplier service. Consumer
teams can protect themselves from these failures by
using integration contract tests (martinfowler.com/bliki/
IntegrationContractTest.html) – tests that compare actual
service responses with test values. While such contract
tests are valuable, they are even more useful when
consuming services provide these tests to the supplier,
who can then run all their consumers’ contract tests to
determine if their changes are likely to cause problems
– adopting consumer-driven contracts (martinfowler.
com/articles/consumerDrivenContracts.html). Such
consumer-driven contract tests are an essential part
of a mature microservice testing (martinfowler.com/
articles/microservice-testing/) portfolio.

When we need a diagram that describes the current
infrastructure or physical architecture we usually take
to our favorite technical diagramming tool. If you are
using the cloud or virtualization technologies this no
longer makes sense, we can use the provided APIs to
interrogate the actual infrastructure and generate a live,
automated infrastructure diagram using simple tools
like GraphViz (graphviz.org) or by outputting SVG.

Offline first web applications provide the ability to
design web applications for offline access by employing
caching and updating mechanisms. The implementation
requires a flag in the DOM to check whether the accessing
device is offline or online, accessing local storage when
offline, and synchronising data when online. All the major
browsers now support an offline mode, with the local
information accessible by specifying a manifest attribute
in the html, which bootstraps the process of downloading
and caching the resources such as HTML, CSS, JavaScript,
images and other kinds of resources. There are some
tools which help simplify offline first implementation such
as Hoodie (hood.ie), and CouchDB (couchdb.apache.
org) also offers ability to work with a locally deployed
application on a local data storage.

Most software development efforts are done using the
mental model of a project, something that is planned,
executed, and delivered within defined time-slots. Agile
development challenged much of this model, replacing
an up-front determination of requirements with an on-
going discovery process that runs concurrently with
development. Lean startup techniques, such as A/B
testing of observed requirements (martinfowler.com/
bliki/ObservedRequirement.html), further erode this
mindset. We consider that most software efforts should
follow the lead of Lean Enterprise (info.thoughtworks.
com/lean-enterprise-book.html) and consider themselves
to be building products that support underlying business
processes. Such products do not have a final delivery,
rather an on-going process of exploring how best to
support and optimize that business process which
continues as long as the business is worthwhile. For these
reasons we encourage organizations to think in terms of
products rather than projects. HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

TECHNIQUES

ADOPT
1. Consumer-driven contract testing
2. Focus on mean time to recovery
3. Generated infrastructure diagrams
4. Structured logging

TRIAL
5. Canary builds
6. Datensparsamkeit
7. Local storage sync
8. NoPSD
9. Offline first web applications
10. Products over projects
11. Threat Modelling

ASSESS
12. Append-only data store
13. Blockchain beyond bitcoin
14. Enterprise Data Lake
15. Flux
16. Git based CMS/Git for non-code
17. Phoenix Environments
18. Reactive Architectures

HOLD
19. Long lived branches with Gitflow
20. Microservice envy
21. Programming in your CI/CD tool
22. SAFe™
23. Security sandwich
24. Separate DevOps team

http://martinfowler.com/articles/nonDeterminism.html#RemoteServices
http://martinfowler.com/articles/nonDeterminism.html#RemoteServices
http://martinfowler.com/bliki/TestDouble.html
http://martinfowler.com/bliki/TestDouble.html
http://martinfowler.com/bliki/IntegrationContractTest.html
http://martinfowler.com/bliki/IntegrationContractTest.html
http://martinfowler.com/articles/consumerDrivenContracts.html
http://martinfowler.com/articles/consumerDrivenContracts.html
http://martinfowler.com/articles/microservice-testing/
http://martinfowler.com/articles/microservice-testing/
http://graphviz.org
http://hood.ie/
http://couchdb.apache.org/
http://couchdb.apache.org/
http://martinfowler.com/bliki/ObservedRequirement.html
http://martinfowler.com/bliki/ObservedRequirement.html
http://info.thoughtworks.com/lean-enterprise-book.html
http://info.thoughtworks.com/lean-enterprise-book.html

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 6

At this point the vast majority of development teams
are aware of the importance of writing secure software
and dealing with their users’ data in a responsible way.
They do face a steep learning curve and a vast number
of potential threats, ranging from organized crime and
government spying to teenagers who attack systems
“for the lulz”. Threat Modelling (owasp.org/index.php/
Category:Threat_Modeling) is a set of techniques, mostly
from a defensive perspective, that help understand and
classify potential threats. When turned into “evil user
stories” this can give a team a manageable and effective
approach to making their systems more secure.

Flux (facebook.github.io/flux) is an application
architecture that Facebook has adopted for its web
application development. Usually mentioned in
conjunction with react.js, Flux is based on a one-way
flow of data up through the rendering pipeline triggered
by users or other external events modifying data stores.
It’s been a while since we’ve seen any alternatives to the
venerable model-view-* architectures and Flux embraces
the modern web landscape of client-side JavaScript
applications talking to multiple back-end services.

These days, most software developers are used
to working with Git for source code control and
collaboration. But Git can be used as a base mechanism
for other circumstances where a group of people need
to collaborate on textual documents (that can easily be
merged). We’ve seen increasing amounts of projects use
Git (git-scm.com) as the basis for a lightweight CMS, with
text-based editing formats. Git has powerful features
for tracking changes and exploring alternatives, with a
distributed storage model that is fast in use and tolerant
of networking issues. The biggest problem with wider
adoption is that Git isn’t very easy to learn for non-
programmers, but we expect to see more tools that build
on top of the core Git plumbing. Such tools simplify the
workflow for specific audiences, such as content authors.
We would also welcome more tools to support diffing
and merging for non-textual documents.

The idea of phoenix servers (martinfowler.com/bliki/
PhoenixServer.html) is now well established and has
brought many benefits when applied to the right kinds
of problems, but what about the environment we
deploy these servers into? The concept of Phoenix
Environments can help. We can use automation to
allow us to create whole environments, including
network configuration, load balancing and firewall
ports, for example by using CloudFormation in AWS.
We can then prove that the process works, by tearing

TECHNIQUES continued

the environments down and recreating them from
scratch on a regular basis. Phoenix Environments can
support provisioning new environments for testing,
development, UAT and so on. They can also simplify the
provision of a disaster recovery environment. As with
Phoenix Servers this pattern is not always applicable and
we need to think about carefully about things like state
and dependencies. Treating the whole environment
as a green/blue deployment (martinfowler.com/bliki/
BlueGreenDeployment.html) can be one approach when
environment reconfiguration needs to be done.

The techniques of functional reactive programming
have steadily gained in popularity over recent years,
and we’re seeing increased interest in extending this
concept to distributed systems architectures. Partly
inspired by The Reactive Manifesto (reactivemanifesto.
org), these reactive architectures are based on a
one-way, asynchronous flow of immutable events
through a network of independent processes (perhaps
implemented as microservices). In the right setting,
these systems are scalable and resilient and decrease
the coupling between individual processing units.
However, architectures based entirely on asynchronous
message passing introduce complexity and often rely on
proprietary frameworks. We recommend assessing the
performance and scalability needs of your system before
committing to this as a default architectural style.

Traditional approaches to security have relied on
up-front specification followed by validation at the
end. This “Security Sandwich” approach is hard to
integrate into Agile teams, since much of the design
happens throughout the process, and it does not
leverage the automation opportunities provided by
continuous delivery. Organizations should look at how
they can inject security practices throughout the agile
development cycle. This includes: evaluating the right
level of Threat Modeling to do up-front; when to classify
security concerns as their own stories, acceptance
criteria, or cross-cutting non-functional requirements;
including automatic static and dynamic security testing
into your build pipeline; and how to include deeper
testing, such as penetration testing, into releases in a
continuous delivery model. In much the same way that
DevOps has recast how historically adversarial groups
can work together, the same is happening for security
and development professionals. (But despite our dislike
of the Security Sandwich model, it is much better than
not considering security at all, which is sadly still a
common circumstance.)

http://owasp.org/index.php/Category:Threat_Modeling
http://owasp.org/index.php/Category:Threat_Modeling
http://facebook.github.io/flux
http://git-scm.com
http://martinfowler.com/bliki/PhoenixServer.html
http://martinfowler.com/bliki/PhoenixServer.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://reactivemanifesto.org
http://reactivemanifesto.org

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 7

Apache Spark (spark.apache.org) has been steadily
gaining ground as a fast and general engine for large-
scale data processing. The engine is written in Scala and
is well suited for applications that reuse a working set
of data across multiple parallel operations. It’s designed
to work as a standalone cluster or as part of Hadoop
YARN cluster. It can access data from sources such as
HDFS, Cassandra, S3 etc. Spark also offers many higher
level operators in order to ease the development of
data parallel applications. As a generic data processing
platform it has enabled development of many higher
level tools such as interactive SQL (Spark SQL), real time
streaming (Spark Streaming), machine learning library
(MLib), R-on-Spark etc.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

PLATFORMS
For a while now the Hadoop community has been trying
to bring low-latency, interactive SQL capability to the
Hadoop platform (better known as SQL-on-Hadoop). This
has led to a few open source systems such as Cloudera
Impala, Apache Drill, Facebook’s Presto etc being
developed actively through 2014. We think the SQL-on-
Hadoop trend signals an important shift as it changes
Hadoop’s proposition from being a batch oriented
technology that was complementary to databases into
something that could compete with them.

Cloudera Impala (cloudera.com/content/cloudera/en/
products-and-services/cdh/impala.html) was one of
the first SQL-on-Hadoop platforms. It is a distributed,
massively-parallel, C++ based query engine. The core
component of this platform is the Impala daemon that
coordinates the execution of the SQL query across one
or more nodes of the Impala cluster. Impala is designed
to read data from files stored on HDFS in all popular file
formats. It leverages Hive’s metadata catalog, in order to
share databases and tables between the two database
platforms. Impala comes with a shell as well as JDBC and
ODBC drivers for applications to use.

Passwords continue to be a poor mechanism for
authenticating users and we’ve recently seen companies
such as Yahoo! move to a “no passwords” solution—a
one-time code is texted to your phone whenever you
need to log in from a new browser. If you are still using
passwords we recommend employing two-factor
authentication which can significantly improve security.
Time-based One-Time Password (TOTP) (en.wikipedia.
org/wiki/Time-based_One-time_Password_Algorithm)
is the standard algorithm in this space, with free
smartphone authenticator apps from Google (play.
google.com/store/apps/details?id=com.google.android.
apps.authenticator2) and Microsoft (windowsphone.
com/en-us/store/app/authenticator/e7994dbc-2336-
4950-91ba-ca22d653759b).

ADOPT TRIAL
25. Apache Spark
26. Cloudera Impala
27. DigitalOcean
28. TOTP Two-Factor Authentication

ASSESS
29. Apache Kylin
30. Apache Mesos
31. CoreCLR and CoreFX
32. CoreOS
33. Deis
34. H2O
35. Jackrabbit Oak
36. Linux security modules
37. MariaDB
38. Netflix OSS Full stack
39. OpenAM
40. SDN
41. Spark Photon/Spark Electron
42. Text it as a service / Rapidpro.io
43. Time series databases
44. U2F

HOLD
45. Application Servers
46. OSGi
47. SPDY

http://spark.apache.org
http://cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
http://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
http://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
http://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
http://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
http://windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b
http://windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b
http://windowsphone.com/en-us/store/app/authenticator/e7994dbc-2336-4950-91ba-ca22d653759b

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 8

PLATFORMS continued

Apache Kylin (kylin.io) is an open source analytics
solution from eBay Inc. that enables SQL based
multidimensional analysis (OLAP) on very large datasets.
Kylin is intended to be a Hadoop based hybrid OLAP
(HOLAP) solution that will eventually support both
MOLAP and ROLAP style multidimensional analysis.
With Kylin you can define cubes using a Cube Designer
and initiate an offline process that builds these cubes.
The offline process performs a pre-join step to join facts
and dimension tables into a flattened out structure.
This is followed by a pre-aggregation phase where
individual cuboids are built using Map Reduce jobs. The
results are stored in HDFS sequence files and are later
loaded into HBase. The data requests can originate
from SQL submitted using a SQL-based tool. The query
engine (based on Apache Calcite), determines if the
target dataset exists in HBase. If so, the engine directly
accesses the target data from HBase and returns the
result with sub-second latency. If not, the engine routes
the queries to Hive (or any other SQL on Hadoop solution
enabled on the cluster).

CoreCLR (github.com/dotnet/coreclr) and CoreFX
(github.com/dotnet/corefx) is the core platform and
framework for .NET. Although not new, they have
recently been open sourced by Microsoft. A key change
is that these dependencies are bin-deployable, they do
not need to be installed on a machine in advance. This
eases side-by-side deployments, allowing applications
to use different framework versions without conflicts.
Something written in .NET is then an implementation
detail, you can install a .NET dependency into any
environment. A .NET tool is no different than something
written in C from an external dependency perspective,
making it a much more attractive option for general
purpose applications and utilities. CoreFX is also being
factored into individual NuGet dependencies, so that
applications can pull what they need, keeping the
footprint for .NET applications and libraries small and
making it easier to replace part of the framework.

Heroku, with its 12-factor application model, has
changed the way we think about building, deploying, and
hosting web applications. Deis (deis.io) encapsulates the
Heroku PaaS model in an open-source framework that
deploys onto Docker containers hosted anywhere. Deis
is still evolving, but for applications that fit the 12-factor
model it has the potential to greatly simplify deployment
and hosting in the environment of your choice. Deis is
yet another example of the rich ecosystem of platforms
and tools emerging around Docker.

Predictive analytics are used in more and more products,
often directly in end-user facing functionality. H2O
(docs.0xdata.com) is an interesting new open source
package (with a startup behind it) that makes predictive
analytics accessible to project teams due to its easy-to-
use user interface. At the same time it integrates with
the data scientists’ favorite tools, R and Python, as well
as Hadoop and Spark. It offers great performance and,
in our experience, easy integration at runtime, especially
on JVM-based platforms.

When Oracle ceased development on Sun’s OpenSSO—
an open source access management platform—It was
picked up by ForgeRock and integrated into their Open
Identity Suite. Now named OpenAM (forgerock.com/
products/open-identity-stack/openam), it fills the niche
for a scalable, open-source platform that supports
OpenID Connect and SAML 2.0. However, OpenAM’s
long history has resulted in a sprawling codebase whose
documentation can be inscrutable. Hopefully, a slimmed-
down alternative with better support for automated
deployment and provisioning will emerge soon.

Spark (spark.io) is a full stack solution for cloud
connected devices. Spark Photon is a microcontroller
with wifi module. Spark Electron is a variant that
connects to a cellular network. Spark OS adds REST
API to the devices. This simplifies the entry to IoT and
building your own connected devices.

A time series database (TSDB) is a system that is
optimized for handling time series data. It allows users
to perform CRUD operations on various time series
organized as database objects. It also provides the
ability to perform statistical calculations on the series
as a whole. Although TSDBs are not entirely a new
technology we are seeing a renewed interest in the these
databases primarily in the realm of IoT applications. This
is being facilitated by many open source and commercial
platforms (such as OpenTSDB, InfluxDB, Druid,
BlueFloodDB etc.) that have mushroomed recently. Its
also worth mentioning that some of these systems use
other distributed databases such Cassandra and HBase
as their underlying storage engine.

http://kylin.io
http://github.com/dotnet/coreclr
http://github.com/dotnet/corefx
http://deis.io
http://docs.0xdata.com
http://forgerock.com/products/open-identity-stack/openam
http://forgerock.com/products/open-identity-stack/openam
http://spark.io

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 9

The rise of containers, phoenix servers and continuous
delivery has seen a move away from the usual approach
to deploying web applications. Traditionally we have
built an artifact and then installed that artifact into
an application server. The result was long feedback
loops for changes, increased build times and the not
insignificant overhead of managing these application
servers in production. Many of them are a pain to
automate too. Most teams we work with favor bundling
an embedded http server within your web application.
There are plenty of options available: Jetty, SimpleWeb,
Webbit and Owin Self-Host amongst others. Easier
automation, easier deployment and a reduction in the
amount of infrastructure you have to manage lead us
to recommend embedded servers over application
servers for future projects.

The SPDY (chromium.org/spdy/spdy-whitepaper)
protocol was developed by Google from 2009 as an
experiment to provide an alternative protocol to address
performance shortcomings of HTTP/1.1. The new HTTP/2
standard protocol includes many of the key performance
features of SPDY, and Google has announced it will drop
browser SPDY support in early 2016. If your application
requires the features of SPDY, we recommend you look
instead at HTTP/2.

http://chromium.org/spdy/spdy-whitepaper

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 10

Although the idea of dependency management is not
new and considered to be a fundamental development
practice, it is not widely adopted by the PHP community.
Composer (getcomposer.org) is a tool for dependency
management in PHP. It is strongly influenced by tools
from other technology stacks like Node’s npm and Ruby’s
Bundler. We are now seeing wide adoption across PHP
projects and it is fairly mature. You can still have to do
some shims for internal libraries, you can use it for most
external libraries.

Good testing of components in an enterprise system is
critical and with increased emphasis on service-based
separation and deployment automation—critical factors
for success with microservices—better tooling in this
space is needed. The industry term “service virtualization”
refers to tools that can emulate specific components in
such an environment. We have seen great success with
Mountebank (mbtest.org), a lightweight tool for stubbing
and mocking HTTP, HTTPS, SMTP and TCP.

Postman (getpostman.com/features) is a Chrome
extension that acts as a REST client in your browser,
allowing you to create requests and inspect responses. It
is a useful tool when developing an API or implementing
a client to call an existing API. Postman supports OAuth1
and OAuth2 tokens allowing addition of them to requests
where necessary. The response is available as a prettified
JSON or XML. With Postman you are able to retrieve a
history of requests performed to quickly edit and test
the API response to different data. It offers a suite of
extensions that allow you to use it as a full-blown test
runner too, although we discourage the record and replay
style of testing it promotes.

Brighter (iancooper.github.io/Paramore/Brighter.html) is
an open source library for .Net that provides scaffolding
to implement Command Invocation. We have had good
feedback from teams using it, especially in conjunction
with the ports and adaptors pattern and CQRS. They
especially like that it integrates well with Polly to provide
circuit breaking functionality.

TOOLS

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

We continue to be impressed with Consul (consul.
io), a service discovery tool supporting both DNS and
HTTP-based discovery mechanisms. It goes beyond
other discovery tools by providing customizable health-
checks for registered services, ensuring that unhealthy
instances are marked accordingly. More tools have
emerged to work with Consul to make it even more
powerful. Consul Template (github.com/hashicorp/consul-
template) enables configuration files to be populated with
information from Consul, making things like client-side
load balancing using mod_proxy much easier. In the world
of Docker, registrator (github.com/gliderlabs/registrator)
can automatically register docker containers as they
appear with Consul with extremely little effort, making it
much easier to manage container-based setups.

ADOPT
48. Composer
49. Go CD
50. Mountebank
51. Postman

TRIAL
52. Boot2docker
53. Brighter
54. Consul
55. Cursive
56. GitLab
57. Hamms
58. IndexedDB
59. Polly
60. REST-assured
61. Swagger
62. Xamarin
63. ZAP

ASSESS
64. Apache Kafka
65. Blackbox
66. Bokeh/Vega
67. Gor
68. NaCl
69. Origami
70. Packetbeat
71. pdfmake
72. PlantUML
73. Prometheus
74. Quick
75. Security Monkey

HOLD
76. Citrix for development

http://getcomposer.org
http://mbtest.org
http://getpostman.com/features
http://iancooper.github.io/Paramore/Brighter.html
http://consul.io
http://consul.io
http://github.com/hashicorp/consul-template
http://github.com/hashicorp/consul-template
http://github.com/gliderlabs/registrator

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 11

TOOLS continued

Many many wonderful stories of failure in our industry
are caused by the assumption that networks are always
reliable and servers respond quickly and correctly all
the time. Hamms (github.com/kevinburke/hamms) is
an interesting open-source tool which acts as a badly
behaved HTTP server, triggering a number of failures
including connection failures or slow and/or malformed
responses. It may be useful for testing that your software
handles failures gracefully.

Several of our teams working on .Net projects have
recommended Polly (github.com/michael-wolfenden/
Polly) as being useful when building microservice based
systems. It encourages the fluent expression of transient
exception handling policies and the circuit breaker
pattern including policies such as Retry, Retry Forever
and Wait and Retry. Libraries already exist in other
languages, Hystrix for Java for example, and Polly is a
welcome addition from the .Net community.

REST-assured (code.google.com/p/rest-assured) is a
Java domain specific language for testing and validating
RESTful services. It simplifies the testing of REST based
services built on top of HTTP Builder. REST-assured
supports the different REST requests and can be used to
validate and verify the responses from the APIs. It also
provides a JSON schema validation and can thus be used
to verify that the endpoints are returning the right types
of expected data.

The ZED Attack Proxy (ZAP) (owasp.org/index.php/
OWASP_Zed_Attack_Proxy_Project) is a project from
OWASP which allows you to probe an existing site for
security vulnerabilities in an automated fashion. It can
be used as part of periodic security testing, or else
integrated into a CD pipeline to provide ongoing checks
for common vulnerabilities. The use of a tool like ZAP
doesn’t replace the need to think carefully about security
and do other sorts of more thorough testing, but as
another tool to help ensure our systems are more secure
it’s a good addition to the toolbox.

Many recent developments in enterprise software
revolve around asynchronous sequences of immutable
event sequences as opposed to synchronous, point-to-
point requests that modify state. Apache Kafka (kafka.
apache.org) is an open-source messaging framework
that supports this architectural style by publishing
ordered message feeds to many independent,
lightweight consumers. Kafka’s unique design allows the
number of consumers to scale while maintaining strong
ordering on the messages.

Blackbox (github.com/StackExchange/blackbox) is a
simple tool for encrypting specific files while at rest in
your source repository. This is particularly useful if you
need to store passwords or private keys. Blackbox works
with Git, Mercurial and Subversion and uses GPG for the
encryption. Each user has their own key, which makes
it easy to revoke access on a granular level. There is a
lot happening in this space and a few other players to
consider including git-crypt and Trousseau.

In the world of data science and analytics, much of
the work is done using Python and R, languages which
sadly offer few options for web-accessible plotting of
visualizations. One approach is to convert the result of
analysis into something that can be easily visualized and
interacted with in the browser. We’re aware of two tools
that are an attempt to do this. Bokeh (bokeh.pydata.
org) is a Python and JavaScript library that allows you
to create interactive visualizations “in the style of D3.js”
but with high performance over large or streaming
data sets. Vega (trifacta.github.io/vega) is a declarative
visualization grammar for D3 that consumes server-
generated JSON datasets and translates visualization
descriptions into D3.js code.

Gor (github.com/buger/gor) is an open-source tool
for capturing and replaying live HTTP traffic into a test
environment in order to continuously test your system
with real data. It can be used to increase confidence
in code deployments, configuration changes and
infrastructure changes.

The NaCl (nacl.cr.yp.to) library (pronounced ‘Salt’)
provides a set of features for encryption, decryption,
and signatures designed to make it easier to implement
secure network communication or other cryptography
requirements. Although these functions exist in other
libraries, NaCl promises higher speed and easier to
use APIs. Current support is for C and C++ with Python
wrappers in progress.

Origami (facebook.github.io/origami) is a free tool for
designing user prototypes with a variety of keyboard
shortcuts for common functions. It provides the
possibility of exporting the prototypes as code snippets
to Objective-C for iOS, Java for Android and JavaScript for
Web. This tool can be used to rapidly build interactive
user facing prototypes and testing user flows. We
recommend investigating this tool if the use case fits
from the experience we have gathered from several of
our teams.

http://github.com/kevinburke/hamms
http://github.com/michael-wolfenden/Polly
http://github.com/michael-wolfenden/Polly
http://code.google.com/p/rest-assured
http://owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://kafka.apache.org
http://kafka.apache.org
http://github.com/StackExchange/blackbox
http://bokeh.pydata.org
http://bokeh.pydata.org
http://trifacta.github.io/vega
http://github.com/buger/gor
http://nacl.cr.yp.to/
http://facebook.github.io/origami

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 12

pdfmake (github.com/bpampuch/pdfmake) is a
JavaScript library which allows for creation and printing
of PDF documents directly in the browser. To use
pdfmake you construct a document object that supports
structural elements such as tables, columns, and rich
styling, then helper methods can create and print or
download a PDF without leaving client-side JavaScript.

Developing a software system by first creating a large
number of detailed diagrams is an approach that, in
our experience, does not compare favorably to the
alternatives. However, describing a particularly complex
and intricate part of the system with a diagram is usually
a good idea, and the UML itself offers a number of useful
and commonly understood diagrams. We like PlantUML
(plantuml.sourceforge.net) for creating these diagrams
because it allows expressing the intent behind the
diagrams in a clear textual form, without having to fiddle
with overloaded graphical tools. Having a textual form also
allows versioning and storage alongside the source code.

SoundCloud have recently open sourced a Graphite
replacement, Prometheus (prometheus.io).Developed
as a reaction to difficulties with Graphite in their
production systems, Prometheus works differently to
Graphite, by primarily supporting a pull-based HTTP
model (although a more Graphite-like push model is
also supported). It also goes beyond Graphite by being
built to support alerting based on captured metrics, so
it becomes a much more active part of your operational

toolset. Some caution should be used in adopting new
technology in the production monitoring space, but
early reports are that SoundCloud are happy using it in
production, and Docker are also contributing to ongoing
development.

Quick (github.com/Quick/Quick) is a testing framework
for Swift and Objective-C, which comes bundled with
Nimble, a matcher framework for tests. Quick helps
verify the behavior of Swift and Objective-C programs.
Quick has the same syntactic flavor as RSpec and
Jasmine and is easy to set up. It is very organized,
allows for assertion of types and makes it easy to test
asynchronous code.

Security Monkey (github.com/Netflix/security_monkey)
is another tool in Netflix’s Simian Army, which is a
suite of tools designed to ensure that systems are
being built in a resilient fashion. As well as providing
a (configurable) assessment of any potential security
vulnerabilities in your AWS setup, it can also be used to
monitor changes on an ongoing basis, alerting different
groups as required. It does overlap in some ways with
AWS’ own Trusted Advisor Report (aws.amazon.com/
premiumsupport/trustedadvisor) and CloudTrail (aws.
amazon.com/cloudtrail) service, as it was developed
prior to both these services being made generally
available, but its capabilities do go beyond these
offerings. If either of those services don’t quite meet
your requirements, Security Monkey is worth a look.

http://github.com/bpampuch/pdfmake
http://plantuml.sourceforge.net
http://prometheus.io
http://github.com/Quick/Quick
http://github.com/Netflix/security_monkey
http://aws.amazon.com/premiumsupport/trustedadvisor
http://aws.amazon.com/premiumsupport/trustedadvisor
http://aws.amazon.com/cloudtrail
http://aws.amazon.com/cloudtrail

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 13

Since we last talked about Nancy (nancyfx.org) on the
technology radar it has become the default choice on
our .NET projects. Architectures centred around small,
vertical slices and microservices simply require light-
weight deployment options and low ceremony tooling.

One benefit to the ongoing avalanche of front-end
JavaScript frameworks is that occasionally, a new idea
crops up that makes us think. React.js (facebook.github.
io/react) is a UI/View framework in which JavaScript
functions generate HTML in a reactive data flow. We
have seen several smaller projects achieve success
with React.js and developers are drawn to its clean,
composeable approach to componentization.

Spring Boot (projects.spring.io/spring-boot) allows
easy set up of standalone Spring-based applications.
It’s ideal for pulling up new microservices and easy to
deploy. It also makes data access less of a pain due to
the hibernate mappings with much less boilerplate code.
We like that Spring Boot simplifies Java services built
with Spring, but have learned to be cautious of the many
dependencies. Spring still lurks just beneath the surface.

Widespread usage of AngularJS continues on
ThoughtWorks projects, although not every experience is
positive. We continue to advise teams to assess whether
the additional complexity of a single-page JavaScript
application is necessary to meet their requirements. We
also recommend assessing alternative frameworks, and
in this radar edition we highlight Ember.js (emberjs.com)
which is growing in popularity within ThoughtWorks.
Ember is praised for its approach of opinionated
convention over configuration, responsive core team of
committers, performance, and build tooling support via
Ember CLI.

In the crowded space of JavaScript frameworks, we want
to highlight Flight.js (flightjs.github.io) as a lightweight
framework to build components. Flight gets by without
much magic when adding behavior to DOM nodes. Its

LANGUAGES & FRAMEWORKS

event-driven and component-based nature promotes
writing decoupled code. This makes testing individual
components comparatively easy. Care must be taken,
however, when components need to interact with each
other. There is little support for testing and a real
danger to get into event hell. We do like that it uses
functional mixins for behavior, like composition instead
of inheritance.

With some real-world experience under our belt, Swift
(developer.apple.com/swift) still shows a lot of promise.
Some of the problems, like long compile times, are
being addressed. However, continued language changes
cause extra development effort and make building
older versions of your own software burdensome.
Testing and refactoring also remain painful. On balance,
though, you should still consider Swift when starting new
development projects for the Apple ecosystem.

HOLDHOLD ASSESSASSESS TRIALTRIAL ADOPTADOPT

31

25

29

26

28

32

30

27

35

36

37

38

33
34

39

41
43

40

44

42

45

46

64

59

53

54
57

49

58

60

67

68

63

70

66

62

56

55
52 69

71

72

73

74

75

84

79

81

82

78

80

87

83

85

77

89

90

88 92

91

86

50

48

51

65

61

76

47

2

4

1
5

6
3

9
15

16

23

17

18

8

24

11

7

10

12
19

20

21

22

13

14

ADOPT
77. Nancy

TRIAL
78. Dashing
79. Django REST
80. Ionic Framework
81. Nashorn
82. Om
83. React.js
84. Retrofit
85. Spring Boot

ASSESS
86. Ember.js
87. Flight.js
88. Haskell Hadoop library
89. Lotus
90. Reagent
91. Swift

HOLD
92. JSF

http://nancyfx.org
http://facebook.github.io/react
http://facebook.github.io/react
http://projects.spring.io/spring-boot
http://emberjs.com
http://flightjs.github.io
http://developer.apple.com/swift

© May 2015, ThoughtWorks, Inc. All Rights Reserved. TECHNOLOGY RADAR MAY 2015 | 14

ThoughtWorks is a software company and community
of passionate, purpose-led individuals that specialize
in software consulting, delivery and products. We think
disruptively to deliver technology to address our clients’
toughest challenges, all while seeking to revolutionize
the IT industry and create positive social change. We
make pioneering tools for software teams who aspire to
be great. Our products help organizations continuously
improve and deliver quality software for their most

critical needs. Founded over 20 years ago, ThoughtWorks
has grown from a small group in Chicago to a company
of over 3000 people spread across 30 offices in 12
countries: Australia, Brazil, Canada, China, Ecuador,
Germany, India, Singapore, South Africa, Uganda, the
United Kingdom, and the United States.

http://thoughtworks.com

