
Software
 Architecture:
 The Hard Parts
Modern Trade-Off Analyses for Distributed
Architectures

Neal Ford,
Mark Richards,

Pramod Sadalage &
Zhamak Dehghani

Free
Chapter

This excerpt contains Chapter 7. The complete book is
available on the O’Reilly Online Learning Platform and

through other retailers.

Neal Ford, Mark Richards,
Pramod Sadalage, and Zhamak Dehghani

Software Architecture:
The Hard Parts

Modern Trade-Off Analysis
for Distributed Architectures

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08689-5

[MBP]

Software Architecture: The Hard Parts
by Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani

Copyright © 2022 Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani. All rights
reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Nicole Taché
Production Editor: Christopher Faucher
Copyeditor: Sonia Saruba
Proofreader: Sharon Wilkey

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: O’Reilly Media, Inc.

October 2021: First Edition

Revision History for the First Edition
2021-09-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492086895 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Software Architecture: The Hard Parts,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492086895

Table of Contents

7. Service Granularity. 1
Granularity Disintegrators 4

Service Scope and Function 5
Code Volatility 7
Scalability and Throughput 8
Fault Tolerance 9
Security 11
Extensibility 12

Granularity Integrators 13
Database Transactions 14
Workflow and Choreography 16
Shared Code 19
Data Relationships 21

Finding the Right Balance 24
Sysops Squad Saga: Ticket Assignment Granularity 25
Sysops Squad Saga: Customer Registration Granularity 28

iii

CHAPTER 7

Service Granularity

Thursday, October 14, 13:33

As the migration effort got underway, both Addison and Austen started getting over-
whelmed with all of the decisions involved with breaking apart the domain services pre-
viously identified. The development team also had its own opinions, which made
decision making for service granularity even more difficult.

“I’m still not sure what to do with the core ticketing functionality,” said Addison. “I can’t
decide whether ticket creation, completion, expert assignment, and expert routing
should be one, two, three, or even four services. Taylen is insisting on making everything

fine-grained, but I’m not sure that’s the right approach.”

“Me neither,” said Austen. “And I’ve got my own issues trying to figure out if the customer registra-
tion, profile management, and billing functionality should even be broken apart. And on top of all
that, I’ve got another game this evening.”

“You’ve always got a game to go to,” said Addison. “Speaking of customer functionality, did you ever
figure out if the customer login functionality is going to be a separate service?”

“No,” said Austen, “I’m still working on that as well. Skyler says it should be separate, but won’t give
me a reason other than to say it’s separate functionality.”

“This is hard stuff,” said Addison. “Do you think Logan can shed any light on this?”

“Good idea,” said Austen, “This seat-of-the-pants analysis is really slowing things down.”

Addison and Austen invited Taylen, the Sysops Squad tech lead, to the meeting with Logan so that
all of them could be on the same page with regard to the service granularity issues they were facing.

1

“I’m telling you,” said Taylen, “we need to break up the domain services into smaller services. They are
simply too coarse-grained for microservices. From what I remember, micro means small. We are, after
all, moving to microservices. What Addison and Austen are suggesting simply doesn’t fit with the
microservices model.”

“Not every portion of an application has to be microservices,” said Logan. “That’s one of the biggest
pitfalls of the microservices architecture style.”

“If that’s the case, then how do you determine what services should and shouldn’t be broken apart?”
asked Taylen.

“Let me ask you something, Taylen,” said Logan. “What is your reason for wanting to make all of the
services so small?”

“Single-responsibility principle,” answered Taylen. “Look it up. That’s what microservices is based on.”

“I know what the single-responsibility principle is,” said Logan. “And I also know how subjective it can
be. Let’s take our customer notification service as an example. We can notify our customers through
SMS, email, and we even send out postal letters. So tell me everyone, one service or three services?”

“Three,” immediately answered Taylen. “Each notification method is its own thing. That’s what micro-
services is all about.”

“One,” answered Addison. “Notification itself is clearly a single responsibility.”

“I’m not sure,” answered Austen. “I can see it both ways. Should we just toss a coin?”

“This is exactly why we need help,” sighed Addison.

“The key to getting service granularity right,” said Logan, “is to remove opinion and gut feeling, and
use granularity disintegrators and integrators to objectively analyze the trade-offs and form solid
justifications for whether or not to break apart a service.”

“What are granularity disintegrators and integrators?” asked Austen.

“Let me show you,” said Logan.

Architects and developers frequently confuse the terms modularity and granularity,
and in some cases even treat them to mean the same thing. Consider the following
dictionary definitions of each of these terms:

Modularity
Constructed with standardized units or dimensions for flexibility and variety in
use.

Granularity
Consisting of or appearing to consist of one of numerous particles forming a
larger unit.

2 | Chapter 7: Service Granularity

It’s no wonder so much confusion exists between these terms! Although the terms
have similar dictionary definitions, we want to distinguish between them because
they mean different things within the context of software architecture. In our usage,
modularity concerns breaking up systems into separate parts (see Chapter 3), whereas
granularity deals with the size of those separate parts. Interestingly enough, most
issues and challenges within distributed systems are typically not related to modular‐
ity, but rather granularity.

Determining the right level of granularity—the size of a service—is one of the many
hard parts of software architecture that architects and development teams continually
struggle with. Granularity is not defined by the number of classes or lines of code in a
service, but rather what the service does—hence why it is so hard to get service gran‐
ularity right.

Architects can leverage metrics to monitor and measure various aspects of a service
to determine the appropriate level of service granularity. One such metric used to
objectively measure the size of a service is to calculate the number of statements in a
service. Every developer has a different coding style and technique, which is why the
number of classes and number of lines of code are poor metrics to use to measure
granularity. The number of statements, on the other hand, at least allows an architect
or development team to objectively measure what the service is doing. Recall from
Chapter 4 that a statement is a single complete action performed in the source code,
usually terminated by a special character (such as a semicolon in languages such as
Java, C, C++, C#, Go, JavaScript; or a newline in languages such as F#, Python, and
Ruby).

Another metric to determine service granularity is to measure and track the number
of public interfaces or operations exposed by a service. Granted, while there is still a
bit of subjectiveness and variability with these two metrics, it’s the closest thing we’ve
come up with so far to objectively measure and assess service granularity.

Two opposing forces for service granularity are granularity disintegrators and granu‐
larity integrators. These opposing forces are illustrated in Figure 7-1. Granularity dis‐
integrators address the question “When should I consider breaking apart a service
into smaller parts?”, whereas Granularity integrators address the question “When
should I consider putting services back together?” One common mistake many devel‐
opment teams make is focusing too much on granularity disintegrators while ignor‐
ing granularity integrators. The secret of arriving at the appropriate level of
granularity for a service is achieving an equilibrium between these two opposing
forces.

Service Granularity | 3

Figure 7-1. Service granularity depends on a balance of disintegrators and integrators

Granularity Disintegrators
Granularity disintegrators provide guidance and justification for when to break a ser‐
vice into smaller pieces. While the justification for breaking up a service may involve
only a single driver, in most cases the justification will be based on multiple drivers.
The six main drivers for granularity disintegration are as follows:

Service scope and function
Is the service doing too many unrelated things?

Code volatility
Are changes isolated to only one part of the service?

Scalability and throughput
Do parts of the service need to scale differently?

Fault tolerance
Are there errors that cause critical functions to fail within the service?

Security
Do some parts of the service need higher security levels than others?

Extensibility
Is the service always expanding to add new contexts?

4 | Chapter 7: Service Granularity

The following sections detail each of these granularity disintegration drivers.

Service Scope and Function
The service scope and function is the first and most common driver for breaking up a
single service into smaller ones, particularly with regard to microservices. There are
two dimensions to consider when analyzing the service scope and function. The first
dimension is cohesion: the degree and manner to which the operations of a particular
service interrelate. The second dimension is the overall size of a component, meas‐
ured usually in terms of the total number of statements summed from the classes that
make up that service, the number of public entrypoints into the service, or both.

Consider a typical Notification Service that does three things: notifies a customer
through SMS (Short Message Service), email, or a printed postal letter that is mailed
to the customer. Although it is very tempting to break this service into three separate
single-purpose services (one for SMS, one for email, and one for postal letters) as
illustrated in Figure 7-2, this alone is not enough to justify breaking the service apart
because it already has relatively strong cohesion—all of these functions relate to one
thing, notifying the customer. Because “single purpose” is left for individual opinion
and interpretation, it is difficult to know whether to break apart this service or not.

Figure 7-2. A service with relatively strong cohesion is not a good candidate for disinte‐
gration based on functionality alone

Granularity Disintegrators | 5

https://oreil.ly/caVCG

Now consider a single service that manages the customer profile information, cus‐
tomer preferences, and also customer comments made on the website. Unlike the
previous Notification Service example, this service has relatively weak cohesion
because these three functions relate to a broader scope—customer. This service is
possibly doing too much, and hence should probably be broken into three separate
services, as illustrated in Figure 7-3.

Figure 7-3. A service with relatively weak cohesion is a good candidate for disintegration

This granularity disintegrator is related to the single-responsibility principle coined
by Robert C. Martin as part of his SOLID principles, which states, “every class should
have responsibility over a single part of that program’s functionality, which it should
encapsulate. All of that module, class or function’s services should be narrowly
aligned with that responsibility.” While the single-responsibility principle was origi‐
nally scoped within the context of classes, in later years it has expanded to include
components and services.

6 | Chapter 7: Service Granularity

https://oreil.ly/JZpcT
https://oreil.ly/r64Yw

Within the microservices architecture style, a microservice is defined as a single-
purpose, separately deployed unit of software that does one thing really well. No won‐
der developers are so tempted to make services as small as possible without
considering why they are doing so! The subjectiveness related to what is and isn’t a
single responsibility is where most developers get into trouble with regard to service
granularity. While there are some metrics (such as LCOM) to measure cohesion, it is
nevertheless highly subjective when it comes to services—is notifying the customer
one single thing, or is notifying via email one single thing? For this reason, it is vital
to understand other granularity disintegrators to determine the appropriate level of
granularity.

Code Volatility
Code volatility--the rate at which the source code changes—is another good driver for
breaking a service into smaller ones. This is also known as volatility-based decomposi‐
tion. Objectively measuring the frequency of code changes in a service (easily done
through standard facilities in any source code version-control system) can sometimes
lead to a good justification for breaking apart a service. Consider the notification ser‐
vice example again from the prior section. Service scope (cohesion) alone was not
enough to justify breaking the service apart. However, by applying change metrics,
relevant information is revealed about the service:

• SMS notification functionality rate of change: every six months (avg)
• Email notification functionality rate of change: every six months (avg)
• Postal letter notification functionality rate of change: weekly (avg)

Notice that the postal letter functionality changes weekly (on average), whereas the
SMS and email functionality rarely changes. As a single service, any change to the
postal letter code would require the developer to test and redeploy the entire service,
including SMS and email functionality. Depending on the deployment environment,
this also might mean SMS and email functionality would not be available when the
postal letter changes are deployed. Thus, as a single service, testing scope is increased
and deployment risk is high. However, by breaking this service into two separate
services (Electronic Notification and Postal Letter Notification), as illustrated in Fig‐
ure 7-4, frequent changes are now isolated into a single, smaller service. This in turn
means that the testing scope is significantly reduced, deployment risk is lower, and
SMS and email functionality is not disrupted during a deployment of postal letter
changes.

Granularity Disintegrators | 7

https://oreil.ly/qOtdg

Figure 7-4. An area of high code change in a service is a good candidate for
disintegration

Scalability and Throughput
Another driver for breaking up a service into separate smaller ones is scalability and
throughput. The scalability demands of different functions of a service can be objec‐
tively measured to qualify whether a service should be broken apart. Consider once
again the Notification Service example, where a single service notifies customers
through SMS, email, and printed postal letter. Measuring the scalability demands of
this single service reveals the following information:

• SMS notification: 220,000/minute
• Email notification: 500/minute
• Postal letter notification: 1/minute

Notice the extreme variation between sending out SMS notifications and postal letter
notifications. As a single service, email and postal letter functionality must unneces‐
sarily scale to meet the demands of SMS notifications, impacting cost and also elastic‐
ity in terms of mean time to startup (MTTS). Breaking the Notification Service into
three separate services (SMS, Email, and Letter), as illustrated in Figure 7-5, allows
each of these services to scale independently to meet their varying demands of
throughput.

8 | Chapter 7: Service Granularity

Figure 7-5. Differing scalability and throughput needs is a good disintegration driver

Fault Tolerance
Fault tolerance describes the ability of an application or functionality within a particu‐
lar domain to continue to operate, even though a fatal crash occurs (such as an out-
of-memory condition). Fault Tolerance is another good driver for granularity
disintegration.

Consider the same consolidated Notification Service example that notifies customers
through SMS, email, and postal letter (Figure 7-6). If the email functionality contin‐
ues to have problems with out-of-memory conditions and fatally crashes, the entire
service comes down, including SMS and postal letter processing.

Separating this single consolidated Notification Service into three separate services
provides a level of fault tolerance for the domain of customer notification. Now, a
fatal error in the functionality of the email service doesn’t impact SMS or postal
letters.

Notice in this example that the Notification Service is split into three separate services
(SMS, Email, and Postal Letter), even though email functionality is the only issue
with regard to frequent crashes (the other two are very stable). Since email function‐
ality is the only issue, why not combine the SMS and postal letter functionality into a
single service?

Consider the code volatility example from the prior section. In this case Postal Letter
changes constantly, whereas the other two (SMS and Email) do not. Splitting this

Granularity Disintegrators | 9

service into only two services made sense because Postal Letter was the offending
functionality, but Email and SMS are related—they both have to do with electronically
notifying the customer. Now consider the fault-tolerance example. What do SMS
notification and Postal Letter notification have in common other than a notification
means to the customer? What would be an appropriate self-descriptive name of that
combined service?

Figure 7-6. Fault tolerance and service availability are good disintegration drivers

Moving the email functionality to a separate service disrupts the overall domain cohe‐
sion because the resulting cohesion between SMS and postal letter functionality is
weak. Consider what the likely service names would be: Email Service and…Other
Notification Service? Email Service and…SMS-Letter Notification Service? Email Ser‐
vice and…Non-Email Service? This naming problem relates back to the service scope
and function granularity disintegrator—if a service is too hard to name because it’s
doing multiple things, then consider breaking apart the service. The following disin‐
tegrations help in visualizing this important point:

• Notification Service → Email Service, Other Notification Service (poor name)
• Notification Service → Email Service, Non-Email Service (poor name)
• Notification Service → Email Service, SMS-Letter Service (poor name)
• Notification Service → Email Service, SMS Service, Letter Service (good names)

10 | Chapter 7: Service Granularity

In this example, only the last disintegration makes sense, particularly considering the
addition of another social media notification—where would that go? Whenever
breaking apart a service, regardless of the disintegration driver, always check to see if
strong cohesion can be formed with the “leftover” functionality.

Security
A common pitfall when securing sensitive data is to think only in terms of the storage
of that data. For example, securing PCI (Payment Card Industry) data from non-PCI
data might be addressed through separate schemas or databases residing in different
secure regions. What is sometimes missing from this practice, however, is also secur‐
ing how that data is accessed.

Consider the example illustrated in Figure 7-7 that describes a Customer Profile Ser‐
vice containing two main functions: customer profile maintenance for adding, chang‐
ing, or deleting basic profile information (name, address, and so on); and customer
credit card maintenance for adding, removing, and updating credit card information.

Figure 7-7. Security and data access are good disintegration drivers

While the credit card data may be protected, access to that data is at risk because the
credit card functionality is joined together with the basic customer profile functional‐
ity. Although the API entry points into the consolidated customer profile service may
differ, nevertheless there is risk that someone entering into the service to retrieve the
customer name might also have access to credit card functionality. By breaking this
service into two separate services, access to the functionality used to maintain credit

Granularity Disintegrators | 11

https://oreil.ly/Z5QRV

card information can be made more secure because the set of credit card operations is
going into only a single-purpose service.

Extensibility
Another primary driver for granularity disintegration is_ extensibility_—the ability
to add additional functionality as the service context grows. Consider a payment ser‐
vice that manages payments and refunds through multiple payment methods, includ‐
ing credit cards, gift cards, and PayPal transactions. Suppose the company wants to
start supporting other managed payment methods, such as reward points, store credit
from returns; and other third-party payment services, such as ApplePay, SamsungPay,
and so on. How easy is it to extend the payment service to add these additional pay‐
ment methods?

These additional payment methods could certainly be added to a single consolidated
payment service. However, every time a new payment method is added, the entire
payment service would need to be tested (including other payment types), and the
functionality for all other payment methods unnecessarily redeployed into produc‐
tion. Thus, with the single consolidated payment service, the testing scope is
increased and deployment risk is higher, making it more difficult to add additional
payment types.

Now consider breaking up the existing consolidated service into three separate serv‐
ices (Credit Card Processing, Gift Card Processing, and PayPal Transaction Process‐
ing), as illustrated in Figure 7-8.

Now that the single payment service is broken into separate services by payment
methods, adding another payment method (such as reward points) is only a matter of
developing, testing, and deploying a single service separate from the others. As a
result, development is faster, testing scope is reduced, and deployment risk is lower.

Our advice is to apply this driver only if it is known ahead of time that additional
consolidated contextual functionality is planned, desired, or part of the normal
domain. For example, with notification, it is doubtful the means of notification would
continually expand beyond the basic notification means (SMS, email, or letter). How‐
ever, with payment processing, it is highly likely that additional payment types would
be added in the future, and therefore separate services for each payment type would
be warranted. Since it is often difficult to sometimes “guess” whether (and when) con‐
textual functionality might expand (such as additional payment methods), our advice
is to wait on this driver as a primary means of justifying a granularly disintegration
until a pattern can be established or confirmation of continued extensibility can be
confirmed.

12 | Chapter 7: Service Granularity

Figure 7-8. Planned extensibility is a good disintegration driver

Granularity Integrators
Whereas granularity disintegrators provide guidance and justification for when to
break a service into smaller pieces, granularity integrators work in the opposite way—
they provide guidance and justification for putting services back together (or not
breaking apart a service in the first place). Analyzing the trade-offs between disinte‐
gration drivers and integration drivers is the secret to getting service granularity
right. The four main drivers for granularity integration are as follows:

Database transactions
Is an ACID transaction required between separate services?

Workflow and choreography
Do services need to talk to one another? Shared code: Do services need to share
codeamong one another? Database relationships: Although a service can be bro‐
ken apart, can the data it uses be broken apart as well?

The following sections detail each of these granularity integration drivers.

Granularity Integrators | 13

Database Transactions
Most monolithic systems and course-grained domain services using relational data‐
bases rely on single-unit-of-work database transactions to maintain data integrity and
consistency; see Chapter 9 for the details of ACID (database) transactions and how
they differ from BASE (distributed) transactions. To understand how database trans‐
actions impact service granularity, consider the situation illustrated in Figure 7-9
where customer functionality has been split into a Customer Profile Service that
maintains customer profile information and a Password Service that maintains pass‐
word and other security-related information and functionality.

Notice that having two separate services provides a good level of security access con‐
trol to password information since access is at a service level rather than at a request
level. Access to operations such as changing a password, resetting a password, and
accessing a customer’s password for sign-in can all be restricted to a single service
(and hence the access can be restricted to that single service). However, while this
may be a good disintegration driver, consider the operation of registering a new cus‐
tomer, as illustrated in Figure 7-10.

Figure 7-9. Separate services with atomic operations have better security access control

14 | Chapter 7: Service Granularity

Figure 7-10. Separate services with combined operations do not support database
(ACID) transactions

When registering a new customer, both profile and encrypted password information
is passed into the Profile Service from a user interface screen. The Profile Service
inserts the profile information into its corresponding database table, commits that
work, and then passes the encrypted password information to the Password Service,
which in turn inserts the password information into its corresponding database table
and commits its own work.

While separating the services provides better security access control to the password
information, the trade-off is that there is no ACID transaction for actions such as reg‐
istering a new customer or unsubscribing (deleting) a customer from the system. If
the password service fails during either of these operations, data is left in an inconsis‐
tent state, resulting in complex error handling (which is also error prone) to reverse
the original profile insert or take other corrective action (see Chapter 12 for the
details of eventual consistency and error handling within distributed transactions).
Thus, if having a single-unit-of-work ACID transaction is required from a business
perspective, these services should be consolidated into a single service, as illustrated
in Figure 7-11.

Granularity Integrators | 15

Figure 7-11. A single service supports database (ACID) transactions

Workflow and Choreography
Another common granularity integrator is workflow and choreography--services talk‐
ing to one another (also sometimes referred to as interservice communication or east-
west communications). Communication between services is fairly common and in
many cases necessary in highly distributed architectures like microservices. However,
as services move toward a finer level of granularity based on the disintegration factors
outlined in the previous section, service communication can increase to a point
where negative impacts start to occur.

Issues with overall fault tolerance is the first impact of too much synchronous inter-
service communication. Consider the diagram in Figure 7-12: Service A communi‐
cates with services B and C, Service B communicates with Service C, Service D
communicates with Service E, and finally Service E communicates with Service C. In
this case, if Service C goes down, all other services become nonoperational because of
a transitive dependency with Service C, creating an issue with overall fault tolerance,
availability, and reliability.

16 | Chapter 7: Service Granularity

Figure 7-12. Too much workflow impacts fault tolerance

Interestingly enough, fault tolerance is one of the granularity disintegration drivers
from the previous section—yet when those services need to talk to one another, noth‐
ing is really gained from a fault-tolerance perspective. When breaking apart services,
always check to see if the functionalities are tightly coupled and dependent on one
another. If it is, then overall fault tolerance from a business request standpoint won’t
be achieved, and it might be best to consider keeping the services together.

Overall performance and responsiveness is another driver for granularity integration
(putting services back together). Consider the scenario in Figure 7-13: a large cus‐
tomer service is split into five separate services (services A through E). While each of
these services has its own collection of cohesive atomic requests, retrieving all of the
customer information collectively from a single API request into a single user inter‐
face screen involves five separate hops when using choreography (see Chapter 11 for
an alternative solution to this problem using orchestration). Assuming 300 ms in net‐
work and security latency per request, this single request would incur an additional
1500 ms just in latency alone! Consolidating all of these services into a single service
would remove the latency, therefore increasing overall performance and
responsiveness.

Granularity Integrators | 17

Figure 7-13. Too much workflow impacts overall performance and responsiveness

In terms of overall performance, the trade-off for this integration driver is balancing
the need to break apart a service with the corresponding performance loss if those
services need to communicate with one another. A good rule of thumb is to take into
consideration the number of requests that require multiple services to communicate
with one another, also taking into account the criticality of those requests requiring
interservice communication. For example, if 30% of the requests require a workflow
between services to complete the request and 70% are purely atomic (dedicated to
only one service without the need for any additional communication), then it might
be OK to keep the services separate. However, if the percentages are reversed, then
consider putting them back together again. This assumes, of course, that overall per‐
formance matters. There’s more leeway in the case of backend functionality where an
end user isn’t waiting for the request to complete.

The other performance consideration is with regard to the criticality of the request
requiring workflow. Consider the previous example, where 30% of the requests
require a workflow between services to complete the request, and 70% are purely
atomic. If a critical request that requires extremely fast response time is part of that
30%, then it might be wise to put the services back together, even though 70% of the
requests are purely atomic.

Overall reliability and data integrity are also impacted with increased service commu‐
nication. Consider the example in Figure 7-14: customer information is separated
into five separate customer services. In this case, adding a new customer to the sys‐
tem involves the coordination of all five customer services. However, as explained in
a previous section, each of these services has its own database transaction. Notice in

18 | Chapter 7: Service Granularity

Figure 7-14 that services A, B, and C have all committed part of the customer data, but
Service D fails.

Figure 7-14. Too much workflow impacts reliability and data integrity

This creates a data consistency and data integrity issue because part of the customer
data has already been committed, and may have already been acted upon through a
retrieval of that information from another process or even a message sent out from
one of those services broadcasting an action based on that data. In either case, that
data would either have to be rolled back through compensating transactions or
marked with a specific state to know where the transaction left off in order to restart
it. This is very messy situation, one we describe in detail in Chapter 12. If data integ‐
rity and data consistency are important or critical to an operation, it might be wise to
consider putting those services back together.

Shared Code
Shared source code is a common (and necessary) practice in software development.
Functions like logging, security, utilities, formatters, converters, extractors, and so on
are all good examples of shared code. However, things can get complicated when
dealing with shared code in a distributed architecture and can sometimes influence
service granularity.

Shared code is often contained in a shared library, such as a JAR file in the Java Eco‐
system, a GEM in the Ruby environment, or a DLL in the .NET environment, and is
typically bound to a service at compile time. While we dive into code reuse patterns
in detail in Chapter 8, here we illustrate only how shared code can sometimes

Granularity Integrators | 19

influence service granularity and can become a granularity integrator (putting serv‐
ices back together).

Consider the set of five services shown in Figure 7-15. While there may have been a
good disintegrator driver for breaking apart these services, they all share a common
codebase of domain functionality (as opposed to common utilities or infrastructure
functionality). If a change occurs in the shared library, this would eventually necessi‐
tate a change in the corresponding services using that shared library. We say eventu‐
ally because versioning can sometimes be used with shared libraries to provide agility
and backward compatibility (see Chapter 8). As such, all of these separately deployed
services would have to be changed, tested, and deployed together. In these cases, it
might be wise to consolidate these five services into a single service to avoid multiple
deployments, as well as having the service functionality be out of sync based on the
use of different versions of a library.

Figure 7-15. A change in shared code requires a coordinated change to all services

Not all uses of shared code drive granularity integration. For example, infrastructure-
related cross-cutting functionality such as logging, auditing, authentication, authori‐
zation, and monitoring that all services use is not a good driver for putting services
back together or even moving back to a monolithic architecture. Some of the guide‐
lines for considering shared code as a granularity integrator are as follows:

Specific shared domain functionality
Shared domain functionality is shared code that contains business logic (as
opposed to infrastructure-related cross-cutting functionality). Our recommenda‐
tion is to consider this factor as a possible granularity integrator if the percentage
of shared domain code is relatively high. For example, suppose the common
(shared) code for a group of customer-related functionality (profile maintenance,
preference maintenance, and adding or removing comments) makes up over 40%

20 | Chapter 7: Service Granularity

of the collective codebase. Breaking up the collective functionality into separate
services would mean that almost half of the source code is in a shared library
used only by those three services. In this example it might be wise to consider
keeping the collective customer-related functionality in a single consolidated ser‐
vice along with the shared code (particularly if the shared code changes fre‐
quently, as discussed next).

Frequent shared code changes
Regardless of the size of the shared library, frequent changes to shared function‐
ality require frequent coordinated changes to the services using that shared
domain functionality. While versioning can sometimes be used to help mitigate
coordinated changes, eventually services using that shared functionality will need
to adopt the latest version. If the shared code changes frequently, it might be wise
to consider consolidating the services using that shared code to help mitigate the
complex change coordination of multiple deployment units.

Defects that cannot be versioned
While versioning can help mitigate coordinated changes and allow for backward
compatibility and agility (the ability to respond quickly to change), at times cer‐
tain business functionality must be applied to all services at the same time (such
as a defect or a change in business rules). If this happens frequently, it might be
time to consider putting services back together to simplify the changes.

Data Relationships
Another trade-off in the balance between granularity disintegrators and integrators is
the relationship between the data that a single consolidated service uses as opposed to
the data that separate services would use. This integrator driver assumes that the data
resulting from breaking apart a service is not shared, but rather formed into tight
bounded contexts within each service to facilitate change control and support overall
availability and reliability.

Consider the example in Figure 7-16: a single consolidated service has three functions
(A, B, and C) and corresponding data table relationships. The solid lines pointing to
the tables represent writes to the tables (hence data ownership), and the dotted lines
pointing away from the tables represent read-only access to the table. Performing a
mapping operation between the functions and the tables reveals the results shown in
Table 7-1, where owner implies writes (and corresponding reads) and access implies
read-only access to a table not owned by that function.

Granularity Integrators | 21

Figure 7-16. The database table relationships of a consolidated service

Table 7-1. Function-to-table mapping

Function Table 1 Table 2 Table 3 Table 4 Table 5 Table 6

A owner owner owner owner

B owner access

C access owner

Assume that based on some of the disintegration drivers outlined in the prior section,
this service was broken into three separate services (one for each of the functions in
the consolidated service); see Figure 7-17. However, breaking apart the single consoli‐
dated service into three separate services now requires the corresponding data tables
to be associated with each service in a bounded context.

Notice at the top of Figure 7-17 that Service A owns tables 1, 2, 4, and 6 as part of its
bounded context; Service B owns table 3; and Service C owns table 5. However, notice
in the diagram that every operation in Service B requires access to data in table 5
(owned by Service C), and every operation in Service C requires access to data in
table 3 (owned by Service B). Because of the bounded context, Service B cannot sim‐
ply reach out and directly query table 5, nor can Service C directly query table 3.

To better understand the bounded context and why Service C cannot simply access
table 3, say Service B (which owns table 3) decides to make a change to its business
rules that requires a column to be removed from table 3. Doing so would break Ser‐
vice C and any other services using table 3. This is why the bounded context concept
is so important in highly distributed architectures like microservices. To resolve this
issue, Service B would have to ask Service C for its data, and Service C would have to
ask Service B for its data, resulting in back-and-forth interservice communication
between these services, as illustrated at the bottom of Figure 7-17.

22 | Chapter 7: Service Granularity

Figure 7-17. Database table relationships impact service granularity

Based on the dependency of the data between services B and C, it would be wise to
consolidate those services into a single service to avoid the latency, fault tolerance,
and scalability issues associated with the interservice communication between these
services, demonstrating that relationships between tables can influence service granu‐
larity. We’ve saved this granularity integration driver for last because it is the one
granularity integration driver with the fewest number of trade-offs. While occasion‐
ally a migration from a monolithic system requires a refactoring of the way data is
organized, in most cases it isn’t feasible to reorganize database table entity relation‐
ships for the sake of breaking apart a service. We dive into the details about breaking
apart data in Chapter 6.

Granularity Integrators | 23

Finding the Right Balance
Finding the right level of service granularity is hard. The secret to getting granularity
right is understanding both granularity disintegrators (when to break apart a service)
and granularity integrators (when to put them back together), and analyze the corre‐
sponding trade-offs between the two. As illustrated in the previous scenarios, this
requires an architect to not only identify the trade-offs, but also to collaborate closely
with business stakeholders to analyze those trade-offs and arrive at the appropriate
solution for service granularity.

Tables 7-2 and 7-3 summarize the drivers for disintegrators and integrators.

Table 7-2. Disintegrator drivers (breaking apart a service)

Disintegrator driver Reason for applying driver

Service scope Single-purpose services with tight cohesion

Code volatility Agility (reduced testing scope and deployment risk)

Scalability Lower costs and faster responsiveness

Fault tolerance Better overall uptime

Security access Better security access control to certain functions

Extensibility Agility (ease of adding new functionality)

Table 7-3. Integrator drivers (putting services back together)

Integrator driver Reason for applying driver

Database transactions Data integrity and consistency

Workflow Fault tolerance, performance, and reliability

Shared code Maintainability

Data relationships Data integrity and correctness

Architects can use the drivers in these tables to form trade-off statements that can
then be discussed and resolved by collaborating with a product owner or business
sponsor.

Example 1:

Architect: “We want to break apart our service to isolate frequent code changes, but in
doing so we won’t be able to maintain a database transaction. Which is more important
based on our business needs—better overall agility (maintainability, testability, and
deployability), which translates to faster time-to-market, or stronger data integrity and
consistency?”
Project Sponsor: “Based on our business needs, I’d rather sacrifice a little bit slower
time-to-market to have better data integrity and consistency, so let’s leave it as a single
service for right now.”

24 | Chapter 7: Service Granularity

Example 2:

Architect: “We need to keep the service together to support a database transaction
between two operations to ensure data consistency, but that means sensitive function‐
ality in the combined single service will be less secure. Which is more important based
on our business needs—better data consistency or better security?”
Project Sponsor: “Our CIO has been through some rough situations with regard to
security and protecting sensitive data, and it’s on the forefront of their mind and part
of almost every discussion. In this case, it’s more important to secure sensitive data, so
let’s keep the services separate and work out how we can mitigate some of the issues
with data consistency.”

Example 3:

Architect: “We need to break apart our payment service to provide better extensibility
for adding new payment methods, but that means we will have increased workflow
that will impact the responsiveness when multiple payment types are used for an order
(which happens frequently). Which is more important based on our business needs—
better extensibility within the payment processing, hence better agility and overall
time-to-market, or better responsiveness for making a payment?”
Project Sponsor: “Given that I see us adding only two, maybe three more payment
types over the next couple of years, I’d rather have us focus on the overall responsive‐
ness since the customer must wait for payment processing to be complete before the
order ID is issued.”

Sysops Squad Saga: Ticket Assignment Granularity
Monday, October 25 11:08

Once a trouble ticket has been created by a customer and accepted by the system, it
must be assigned to a Sysops Squad expert based on their skill set, location, and availa-
bility. Ticket assignment involves two main components—a Ticket Assignment compo-
nent that determines which consultant should be assigned the job, and the Ticket
Routing component that locates the Sysops Squad expert, forwards the ticket to the
expert’s mobile device (via a custom Sysops Squad mobile app), and notifies the expert
via an SMS text message that a new ticket has been assigned.

The Sysops Squad development team was having trouble deciding whether these two components
(assignment and routing) should be implemented as a single consolidated service or two separate
services, as illustrated in Figure 7-18. The development team consulted with Addison (one of the
Sysops Squad architects) to help decide which option it should go with.

Sysops Squad Saga: Ticket Assignment Granularity | 25

Figure 7-18. Options for ticket assignment and routing

“So you see,” said Taylen, “the ticket assignment algorithms are very complex, and therefore should
be isolated from the ticket routing functionality. That way, when those algorithms change, I don’t
have to worry about all of the routing functionality.”

“Yes, but how much change is there to those assignment algorithms?” asked Addison. “And how
much change do we anticipate in the future?”

“I apply changes to those algorithms at least two to three times a month. I read about volatility-
based decomposition, and this situation fits it perfectly,” said Taylen.

“But if we separated the assignment and routing functionality into two services, there would need to
be constant communication between them,” said Skyler. “Furthermore, assignment and routing are
really one function, not two.”

“No,” said Taylen, “they are two separate functions.”

“Hold on,” said Addison. “I see what Skyler means. Think about it a minute. Once an expert is found
that is available within a certain period of time, the ticket is immediately routed to that expert. If no
expert is available, the ticket goes back in the queue and waits until an expert can be found.”

“Yes, that’s right,” said Taylen.

26 | Chapter 7: Service Granularity

“See,” said Skyler, “you cannot make a ticket assignment without routing it to the expert. So the two
functions are one.”

“No, no, no,” said Taylen. “You don’t understand. If an expert is seen to be available within a certain
amount of time, then that expert is assigned. Period. Routing is just a transport thing.”

“What happens in the current functionality if a ticket can’t be routed to the expert?” asked Addison.

“Then another expert is selected,” said Taylen.

“OK, so think about it a minute, Taylen,” said Addison. “If assignment and routing are two separate
services, then the routing service would have to then communicate back to the assignment service,
letting it know that the expert cannot be located and to pick another one. That’s a lot of coordina-
tion between the two services.”

“Yes, but they are still two separate functions, not one as Skyler is suggesting,” said Taylen.

“I have an idea,” said Addison. “Can we all agree that the assignment and routing are two separate
activities, but are tightly bound synchronously to each other? Meaning, one function cannot exist
without the other?”

“Yes,” both Taylen and Skyler replied.

“In that case,” said Addison, “let’s analyze the trade-offs. Which is more important—isolating the
assignment functionality for change control purposes, or combining assignment and routing into a
single service for better performance, error handling, and workflow control?”

“Well,” said Taylen, “when you put it that way, obviously the single service. But I still want to isolate
the assignment code.”

“OK,” said Addison, “in that case, how about we make three distinct architectural components in the
single service. We can delineate assignment, routing, and shared code with separate namespaces in
the code. Would that help?”

“Yeah,” said Taylen, “that would work. OK, you both win. Let’s go with a single service then.”

“Taylen,” said Addison, “it’s not about winning, it’s about analyzing the trade-offs to arrive at the most
appropriate solution; that’s all.”

With everyone agreeing to a single service for assignment and routing, Addison wrote the following
architecture decision record (ADR) for this decision:

ADR: Consolidated Service for Ticket Assignment and Routing

Context
Once a ticket is created and accepted by the system, it must be assigned to an expert and
then routed to that expert’s mobile device. This can be done through a single consolida-
ted ticket assignment service or separate services for ticket assignment and ticket routing.

Sysops Squad Saga: Ticket Assignment Granularity | 27

Decision
We will create a single consolidated ticket assignment service for the assignment and
routing functions of the ticket.

Tickets are immediately routed to the Sysops Squad expert once they are assigned, so
these two operations are tightly bound and dependent each other.

Both functions must scale the same, so there are no throughput differences between
these services, nor is back-pressure needed between these functions.

Since both functions are fully dependent on each other, fault tolerance is not a driver for
breaking these functions apart.

Making these functions separate services would require workflow between them, result-
ing in performance, fault tolerance, and possible reliability issues.

Consequences
Changes to the assignment algorithm (which occur on a regular basis) and changes to the
routing mechanism (infrequent change) would require testing and deployment of both
functions, resulting in increased testing scope and deployment risk.

Sysops Squad Saga: Customer Registration Granularity
Friday January 14, 13:15

Customers must register with the system to gain access to the Sysops Squad support
plan. During registration, customers must provide profile information (name, address,
business name if applicable, and so on), credit card information (which is billed on a
monthly basis), password and security question information, and a list of products pur-
chased they would like to have covered under the Sysops Squad support plan.

Some members of the development team insisted that this should be a single consoli-
dated Customer Service containing all of the customer information, yet other members

of the team disagreed and thought that there should be a separate service for each of these func-
tions (a Profile service, Credit Card service, Password service, and a Supported Product service). Sky-
ler, having prior experience in PCI and PII data, thought that the credit card and password
information should be a separate service from the rest, and hence only two services (a Profile service
containing profile and product information and a separate Customer Secure service containing
credit card and password information). These three options are illustrated in Figure 7-19.

28 | Chapter 7: Service Granularity

https://oreil.ly/Vhjmv

Figure 7-19. Options for customer registration

Because Addison was busy with the core ticketing functionality, the development team asked for
Austen’s help in resolving this granularity issue. Anticipating this will not be an easy decision, partic-
ularly since it involved security, Austen scheduled a meeting with Parker, (the product owner), and
Sam, the Penultimate Electronics security expert to discuss these options.

“OK, so what can we do for you?” asked Parker.

“Well,” said Austen, “we are struggling with how many services to create for registering customers
and maintaining customer-related information, You see, there are four main pieces of data we are
dealing with here: profile info, credit card info, password info, and purchased product info.”

Sysops Squad Saga: Customer Registration Granularity | 29

“Whoa, hold on now,” interrupted Sam. “You know that credit card and password information must
be secure, right?”

“Of course we know it has to be secure,” said Austen. “What we’re struggling with is the fact that
there’s a single customer registration API to the backend, so if we have separate services they all
have to be coordinated together when registering a customer, which would require a distributed
transaction.”

“What do you mean by that?” asked Parker.

“Well,” said Austen, “we wouldn’t be able to synchronize all of the data together as one atomic unit
of work.”

“That’s not an option,” said Parker. “All of the customer information is either saved in the database, or
it’s not. Let me put it another way. We absolutely cannot have the situation where we have a cus-
tomer record without a corresponding credit card or password record. Ever.”

“OK, but what about securing the credit card and password information?” asked Sam. “Seems to me,
having separate services would allow much better security control access to that type of sensitive
information.”

“I think I may have an idea.” said Austen. “The credit card information is tokenized in the database,
right?”

“Tokenized and encrypted,” said Sam.

“Great. And the password information?” asked Austen.

“The same,” said Sam.

“OK,” said Austen, “so it seems to me that what we really need to focus on here is controlling access
to the password and credit card information separate from the other customer-related requests—
you know, like getting and updating profile information, and so on.”

“I think I see where you are coming from with your problem,” said Parker. “You’re telling me that if
you separate all of this functionality into separate services, you can better secure access to sensitive
data, but you cannot guarantee my all-or-nothing requirement. Am I right?”

“Exactly. That’s the trade-off,” said Austen.

“Hold on,” said Sam. “Are you using the Tortoise security libraries to secure the API calls?”

“Yes. We use those libraries not only at the API layer, but also within each service to control access
through the service mesh. So essentially it’s a double-check,” said Austen.

“Hmmm,” said Sam. “OK, I’m good with a single service providing you use the Tortoise security
framework.”

“Me too, providing we can still have the all-or-nothing customer registration process,” said Parker.

30 | Chapter 7: Service Granularity

“Then I think we are all in agreement that the all-or-nothing customer registration is an absolute
requirement and we will maintain multilevel security access using Tortoise,” said Austen.

“Agreed,” said Parker.

“Agreed,” said Sam.

Parker noticed how Austen handled the meeting by facilitating the conversation rather than control-
ling it. This was an important lesson as an architect in identifying, understanding, and negotiating
trade-offs. Parker also better understood the difference between design versus architecture in that
security can be controlled through design (use of a custom library with special encryption) rather
than architecture (breaking up functionality into separate deployment units).

Based on the conversation with Parker and Sam, Austen made the decision that customer-related
functionality would be managed through a single consolidated domain service (rather than sepa-
rately deployed services) and wrote the following ADR for this decision:

ADR: Consolidated Service for Customer-Related Functionality

Context
Customers must register with the system to gain access to the Sysops Squad support plan.
During registration, customers must provide profile information, credit card information,
password information, and products purchased. This can be done through a single con-
solidated customer service, a separate service for each of these functions, or a separate
service for sensitive and nonsensitive data.

Decision
We will create a single consolidated customer service for profile, credit card, password, and
products supported.

Customer registration and unsubscribe functionality requires a single atomic unit of work.
A single service would support ACID transactions to meet this requirement, whereas sepa-
rate services would not.

Use of the Tortoise security libraries in the API layer and the service mesh will mitigate
security access risk to sensitive information.

Consequences
We will require the Tortoise security library to ensure security access in both the API gate-
way and the service mesh.

Because it’s a single service, changes to source code for profile info, credit card, password,
or products purchased will increase testing scope and increase deployment risk.

The combined functionality (profile, credit card, password, and products purchased) will
have to scale as one unit.

The trade-off discussed in a meeting with the product owner and security expert is trans-
actionality versus security. Breaking the customer functionality into separate services

Sysops Squad Saga: Customer Registration Granularity | 31

provides better security access, but doesn’t support the “all-or-nothing” database transac-
tion required for customer registration or unsubscribing. However, the security concerns
are mitigated through the use the custom Tortoise security library.

32 | Chapter 7: Service Granularity

About the Authors
Neal Ford is a director, software architect, and meme wrangler at Thoughtworks, a
software company and a community of passionate, purpose-led individuals who
think disruptively to deliver technology that addresses the toughest challenges, all
while seeking to revolutionize the IT industry and create positive social change. He’s
an internationally recognized expert on software development and delivery, especially
in the intersection of Agile engineering techniques and software architecture. Neal
has authored seven books (and counting), a number of magazine articles, and dozens
of video presentations and spoken at hundreds of developers conferences worldwide.
His topics include software architecture, continuous delivery, functional program‐
ming, cutting-edge software innovations, and a business-focused book and video on
improving technical presentations. Check out his website, Nealford.com.

Mark Richards is an experienced, hands-on software architect involved in the archi‐
tecture, design, and implementation of microservices architectures, service-oriented
architectures, and distributed systems in a variety of technologies. He has been in the
software industry since 1983 and has significant experience and expertise in applica‐
tion, integration, and enterprise architecture. Mark is the author of numerous techni‐
cal books and videos, including the Fundamentals of Software Architecture, the
“Software Architecture Fundamentals” video series, and several books and videos on
microservices as well as enterprise messaging. Mark is also a conference speaker and
trainer and has spoken at hundreds of conferences and user groups around the world
on a variety of enterprise-related technical topics.

Pramod Sadalage is director of data and DevOps at Thoughtworks. His expertise
includes application development, Agile database development, evolutionary data‐
base design, algorithm design, and database administration.

Zhamak Dehghani is director of emerging technologies at Thoughtworks. Previ‐
ously, she worked at Silverbrook Research as a principal software engineer, and Fox
Technology as a senior software engineer.

https://www.Nealford.com

Colophon
The animal on the cover of Software Architecture: The Hard Parts is a black-rumped
golden flameback woodpecker (Dinopium benghalense), a striking species of wood‐
pecker found throughout the plains, foothills, forests, and urban areas of the Indian
subcontinent.

This bird’s golden back is set atop a black shoulder and tail, the reason for its pyro-
inspired name. Adults have red crowns with black-and-white spotted heads and
breasts, with a black stripe running from their eyes to the back of their heads. Like
other common, small-billed woodpeckers, the black-rumped golden flameback has a
straight pointed bill, a stiff tail to provide support against tree trunks, and four-toed
feet—two toes pointing forward and two backward. As if its markings weren’t distinc‐
tive enough, the black-rumped golden flameback woodpecker is often detected by its
call of “ki-ki-ki-ki-ki,” which steadily increases in pace.

This woodpecker feeds on insects, such as red ant and beetle larvae, underneath tree
bark using its pointed bill and long tongue. They have been observed visiting termite
mounds and even feeding on the nectar of flowers. The golden flameback also adapts
well to urban habitats, subsisting on readily available fallen fruit and food scraps.

Considered relatively common in India, this bird’s current conservation status is lis‐
ted as being of “least concern.” Many of the animals on O’Reilly covers are endan‐
gered; all of them are important to the world.

The cover image is a color illustration by Karen Montgomery, based on a black and
white engraving from Shaw’s Zoology. The cover fonts are URW Typewriter and
Guardian Sans. The text fonts are Adobe Minion Pro and Myriad Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Chapter 7. Service Granularity
	Granularity Disintegrators
	Service Scope and Function
	Code Volatility
	Scalability and Throughput
	Fault Tolerance
	Security
	Extensibility

	Granularity Integrators
	Database Transactions
	Workflow and Choreography
	Shared Code
	Data Relationships

	Finding the Right Balance
	Sysops Squad Saga: Ticket Assignment Granularity
	Sysops Squad Saga: Customer Registration Granularity

	About the Authors
	Colophon

